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Rt Tn(XA0(1)) — 7a(X,A,0(0))

In this way, 71(A,xo) acts as a group of operators on the left on m,(X,A,xo),
and if A is path connected and xp, x1 € A, then m,(X,A,x0) and m(X,A,x;) are
isomorphic by an isomorphism determined up to the action of m1(A,xo). ™

If w is a path in A, it follows from lemma la that there is a commutative
square for n > 1,

Ta(X,A,0(1) > 7 q(A,w(1))

hml lh[ml
Ta(X,A4,0(0) L5 7,_1(A,0(0))

Thus there is also a covariant functor from the fundamental groupoid of A to
the category of exact sequences which assigns to x € A the homotopy sequence
of (X,A,x).

A pair (X,A) with A path connected is said to be n-simple (for n > 1) if
m1(A,%o) acts trivially on 7,(X,A,xo) for some (and hence all) base points x € A.
If A is simply connected, (X,A) is n-simple for every n > 1.

1} tuEOoREM Let (X,A) be a pair of H spaces with A path connected. Then
(X,A) is n-simple for all n > 1.
proOF This is immediate from theorem 5. =

If (X,A) is n-simple and xp, x; € A, then m,(X,A,x0) and 7,(X,A,xy)
are canonically isomorphic. Therefore any map a: (E*,$*"1) — (X,A) deter-
mines a unique element of 7,(X,A,x) (Whether or not a maps the base point
po € S"1 to x9), and 7a(X,A %) is in one-to-one correspondence with the free
homotopy classes [E",S"~1; X,A]. If (X,A) is n-simple, we shall frequently omit
the base point and write 7,(X,A).

The action of 71(A,x) on 7m2(X,A,x0) is closely related to conjugation, as
shown by the next result.

12 THEOREM If.a, b € 73(X,A,x0), then
aba™1 = hy,(b)

PROOF Let X' = P(X,xo) and let p: X’ — X be the path fibration. Let
A’ = p~YA) and let x5 € A’ be the constant path at xo. By theorem 7.2.8,
there is an isomorphism

Py Wz(X/,Al,xf)) = WQ(X,A,.’XI())
Let @’ = py~(a) and b" = p,~1(b) and observe that, by lemma 1b,
haa(b) = pylhow (b))

Hence it suffices to prove that a’b’a’~! = hyq(b’). Because X’ is contractible,
it follows from the exactness of the homotopy sequence of (X’,A’,xp) that

0: ma(X',A"x5) = m1(A’,x0)
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So to complete the proof we need only prove that
d(@'b'a’ 1) = d(hy (b))

The left-hand side equals (da’)(ab’)(9a’)~1, and because @ commutes with hay,
the right-hand side equals h;q(3b’). The result now follows from the fact that
the action of 71(A’,xp) on itself given by h is the same as conjugation. =

This again implies that 7a(X,x0) = 72(X,{x0},%0) is abelian. Together with
the exactness of the homotopy sequence, it yields the next result.
13 cororLLary The inclusion map j: (X,x0) C (X,A) induces a homomorphism

i#: Wz(X,Xo) —> Wz(X,A,ZXI())

whose image is in the center of ma(X,A,xp). ®

The following result is a generalization of theorem 1.8.7 to the higher
relative homotopy groups.
14 tHEOREM Let f: (X,Ax0) — (Y,B,yo) and g: (X,Ax0) — (Y,B,y1) be
freely homotopic. Then there is a path w in B from yo to y, such that

fa = by © g (X, A,x0) — 7a(Y,B,yo) n>2

prOOF Let F: (X,A) X I — (Y,B) be a homotopy from f | (X,A) to g | (X,A)
and let w(t) = F(xo,t). Then « is a path in B from yo to yi, and if
a: (I"I,po) — (X,A,xo) represents an element of 7,(X,A,x), then the composite

(Indn) X I 225 (X,A) x T 5 (Y,B)
is an w-homotopy from f° a to g ° a. Therefore
fele] = [f° o] = hy(lg ° o]) = (A ° g)la] =
This yields the following analogue of theorem 1.8.8.
15 coroLLary Let f: (X,A) — (Y,B) be a homotopy equivalence. For any
x € A, f induces isomorphisms
fu: (XA %) = ma(Y,B,f(x))

prooF Let g (Y,B) — (X,A) be a homotopy inverse of f. By theorem 14,
there are paths w in A from gf(x) to x and &’ in B from fgf(x) to f(x) such that
the following diagram is commutative

m(XAxX) 2 7 (X,Agf(x)

A 87 Ve
ma(Y,B,f(x)) 2% m,(Y,B,fg fix))

Since the maps hy,) and hy, are isomorphisms, all the maps in the diagram
are isomorphisms. =
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4 THE HUREWICZ HOMOMORPHISM

There are no algorithms for computing the absolute or relative homotopy
groups of a topological space (even when the space is given with a triangula-
tion). One of the few main tools available for the general study of homotopy
groups is their comparison with the corresponding integral singular homology
groups. Such a comparison is effected by means of a canonical homomorphism
from homotopy groups to homology groups. The definition and functorial
properties of this homomorphism are our concern in this section. A theorem
asserting that in the lowest nontrivial dimension for the homotopy group this
homomorphism is an isomorphism will be established in the next section.

We shall be working with the integral singular homology theory through-
out this section. Let n > 1 and recall that H,(I»[") = 0 for ¢ = n and
H,(I",In) is infinite cyclic. To consider relations among the homology groups
of certain pairs in I*, for n > 1 we define

In = {(t, . . . ta) €| 1, < %)
I = (In O I U (b1, . . . o) € I | 1y = W)
L = {(ts, . . . b)) € I"| 1, > %)
Ior = (I» O ") U {(t1, - . . Jty) €I | 8, = %)}

Then I U Iy* = I*and (1" U Ly N (Im U Ir) = Iin U I By the exactness
of the Mayer-Vietoris sequence of the excisive couple {I;" U I, Iy U Iy,
we have

Hq<11" U jg", Iln ) Iz") @ Hq(jln U I, Iln U Ign) :H,I(I", jln U Iz")
By excision, we also have isomorphisms
Hq(ll",ljﬂ) ~ Hy(I1» U Im, 121" ) 12")
Hq<12",12n> = Hq(Iln U L, 1 U 12n>
Combining these, we see that if we let iy: (I, 1% C (I, [;» U I37) and we
let iy: (I, Io") C (I, I1» U L), then we have the following result.
I Lemma The inclusion maps iy and iy define a direct-sum representation
i1 @ dog: Hy(limI1™) @ Hy(IomIom) ~ Hy(Ir, [in U [o7) w

Let vq: (I",I")—) (11",1.175) be defined by Vl(tl, e ,tn) = (tl, e ,tnﬁl,t"/Z)
and define vy: (I",I") — (L% I2") by va(ty, . . . ,tn) = (t1, - . . Jta1, (fn + 1)/2).
Let i: (I",In> - (I", jln U 12n>

2  coroLLARY For any z € Hy(In,Iv)
192 = $14 V142 + l2g V2 ?

PROQF Let fli (In, 11" U 12n> C (In} 11" U 12") and ]'2: (I", 11" U 12") (-
(In, [y U Iy%). Then jigit, = 0 and ji, iz is an isomorphism of Hy(IomI5m)
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onto Hy(I", I;» U Iy") (induced by the inclusion map, which is an excision).
Similarly, jogize = 0 and jogi1g is an isomorphism of Hy(Iy",Iy") onto
H (I, Ii» U Iom). Tt follows from lemma 1 that
ker ]'1* N ker ]'2* =0
Therefore, to prove the corollary it suffices to prove that
i*z - il* V1g? — iz* Vog %

is in the kernel of ji, and in the kernel of 2, .

We first prove that ji, (ig 2 — d14 V142 — G254 ¥242) = 0. Because j1, 414 = 0,

we must show that jiyix? = jiiog V242 Clearly jii is the inclusion map
(I“,I") C (I, 1» U I,") and fiigve is the map fi (InI") — (I, I1» U L")

defined by f(t1, . . . ,ta) = (t1, . . . i1, (ta + 1)/2). A homotopy H from
f1i to f is defined by
H((tl, A ,tn>, t) = (tl, A N (tn -+ t)/(l + t))

Therefore fig iy = fo = f1giog Y24 . A similar argument shows that
fog (1g 2 — 14 V1947 — logvoez) =0 =

For n > 1 the subset I X [»~1 U 0 x I»™1 C [» is contractible. There-
fore Hy(I*, I X "1 U 0 x I"~1) = 0 for all q. By exactness of the homology
sequence of the triple (I7, In, I x I»1 U 0 x I*1), it follows that the map

8: Hy(InIny — Hy_4(I*, I X In1 U 0 x In1)
is an isomorphism for all g. For n > 2 let
: (In~1,1‘n—1) N (l'n’ Ix "1 U0 X In1)

be defined by j(t1, . . . ,t,_1) = (1, t1, . . . ,ta_1). Then j is the composite of
a homeomorphism from (I"=1,I»~1) to (1 x I»~1, 1 X I*"1) and the excision
map

(I X In1 1 x [r=1) C (In, [ X ["=t U 0 x I*1)
Therefore the homomorphism
fy: Ho(In~1L,In"1) — Hy(In, I x In=1 U 0 x In—1)

is an isomorphism for all q.
We define canonical generators Z, € H,(I"I*) forn > 1 by induction on
n as follows:

(@) Z1 € Hy(LI) is the unique element with 9Z; = (1) — (0) in Ho(I).
(b) For n>2, Z, €.Hn(I",I7.‘) is the unique element such that
0Zn = g Zn1 in Hy_y(In, I x In=1 U 0 x [*1),

Given a map a: (In,I") — (X,A), then ay Z, € Hy(X,A). If a ~ B, then
0y Zn = By Zy. Therefore there is for n > 1 a well-defined map

@: (X, Ax0) — Hp(X,A)
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such that ¢la] = ay Z,, where a: (I*,I*) — (X,A) maps 2o to xo and represents
an element of 7,(X,A,xo). By identifying m,(X,xo) with 7,(X,{x0},%0), we also
have a map ¢: 7,(X,x0) — Hyp(X,x0). Some of the basic properties of ¢ are
summarized in the next result.

3 THEOREM Ifn > 2o0rifn = 1and A = {x0}, the map ¢ is a homomor-
phism. It has the following functorial properties:
(a) For n > 2 commutativity holds in the square
Tu( XA x0) <> Tn_1(A%0)
el le
Hu(X,A) & H,_1(Axo)
(b) Given f: (X,A,x0) — (Y,B,yo), commutativity holds in the square
(X, A,X0) f—#> 7n( Y,B,Yo0)
3 le
H(XA) = H,Y.B)
PROOF Let ay, ap: (In,I") — (X,A) be such that
ay(ts, - - stao1s 1) = aolty, - .« JEeo1, 0)

[any two maps of (I,I") to (X,A) are homotopic to such maps if n > 2 or if
n=1and A = {x0}]. Then ay * az = B ° i, where i (I",i") C (I, Iy U Im
and B: (I, I~ U iZ") — (X,A) is defined by

. a1<t1, P atn—1> Qtn) tn S l/z
’tn> -

Bt - ag(ty, o o otnet, 2y — 1)t > Y

Then gla; * az] = Byix Zn = By (11470 + iz*vz*Zn), the last equality by
corollary 2. Since Bi1v1 = @y and Bigry = as, we see that
plar * az] = a1y Zn + a2g Zn = @laa] + @lac]
which shows that ¢ is a homomorphism whenever 7,(X,A,xo) is a group.
To prove (a), let a: (I",I") — (X,A) represent an element of 7,(X,A) for
n > 2 and suppose that a(I X [»=1 U 0 X I""1) = x,. Then d[a] = [«], where
oz (I"1,In1) — (A,xo) is defined by & = (a| (In, I X [™1 U 0 X I""1)) = j.
Then
@Blal = a4 Zomy = (allfn, X [0 U 0 X 1), Zocy
= (a|(I*I X I"1 U0 X I"),0Z,
= 0y Zyn = 09[a]
Finally, (b) follows from the fact that (fa), = feoy. ®

The map ¢ is called the Hurewicz homomorphism. The next result follows
from theorem 3.
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4 coroLLARY The Hurewicz homomorphism maps the homotopy sequence
of (X,A,x¢) into the homology sequence of (X,A,xp). ®

Our next objective is to show that the Hurewicz homomorphism com-
mutes with the actions of the appropriate fundamental group on the homotopy
set. We consider the relative case first.

3 LEMMA Let [a] € m(X,Axo) for n > 2 and let [w] € 71(A,x0). Then

@(hralal) = ¢la]
PROOF Let [a] be represented by a: (I",in) — (X,A) and let h,)[a] be repre-
sented by o (In,I") — (X,A). Then « and o’ are freely homotopic [that is,
a and o’ are homotopic as maps of (I*,I") to (X,A)]. Therefore
pla] = 0y Zn = o Zn = @[] = @lhpala]) =
Next we prove the corresponding result for the absolute case.

6 1remma  Let [a] € 7(X,%0) and [w] € m1(X,x0). Then

P(halal) = ¢la]
PROOF Let Y be the space obtained from I" by collapsing I" to a single
point, this point to be the base point of Y, denoted by yo. The collapsing map
g: (In,I?) — (Y,yo) induces a one-to-one correspondence between [Y,yq; X,x0]
and [InI*; X,xp]. Therefore m,(X,xp) can be identified with [Y,yo0; X,xo].
Furthermore, g,: H,(I?[7) = H,(Y,yo), and we let g, Z, = Z;, € H,(Y,yo).
In these terms, if an element of 7,(X,xo) is represented by a: (Y,yo) — (X,x0),
then ¢la] = ay Z;. Let hy,[a] be represented by a': (Y,yo) — (X,x0). Then «
and o’ are homotopic as maps of Y to X. Therefore, if Z; € H,(Y) is the
unique element such that i, Z; = Z; [where i Y C (Y,y,)], then
(| Y)eZi = (a'|Y)sZs
Let j: X C (X,x5). Then
gla] = ayZn = ayif Zy = ju (| Y ) Z3
Similarly, ¢la’] = ji (o’ | Y )y Z7, and
pla] = ¢la’] = p(hpala]) =

We define 7,(X,A,x0) for n > 2 to be the quotient group of 7,(X,A,xo)

by the normal subgroup G generated by
{(hpala])la] ™ | [a] € ma(X,A x0), [w] € 71(A%0)}
By lemma 5, ¢ maps G to 0 and there is a homomorphism
@' (X, A x0) — Hp(X,A)

whose composite with the canonical map 1: 7,(X,A,x0) — 7p(X,Ax0) is @.
Note that, by theorem 7.3.12, 7,(X,A,x) is abelian for all n > 2.
Similarly, we define w;,(X,x0) for n > 1 to be the quotient group of
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7a(X,%0) by the normal subgroup H generated by
{(hrailal)[a] ™ | [a] € ma(X.x0), [w] € 71(X,x0) }
By lemma 6, ¢ maps H to 0, and there is a homomorphism
9" mr(X,x0) = Hp(X,x0)

whose composite with the canonical map n: m,(X,x0) — 7p(X,x0) is ¢. Note
that 71(X,xo) is the quotient group of 71(X,x0) by its commutator subgroup.
In particular, 7,,(X,xo) is abelian for all n > 1.

Because the groups ,(X,A,xo) and 7,(X,xo) are abelian, we shall find
them easier to compare with the homology groups (which are abelian) than
the homotopy groups themselves. For the comparison it will be convenient to
replace the triple (I",i",zo), which is the antecedent triple used to define
7a(X,A,x0), by the homeomorphic triple (A", Am vo), where A" is the standard
n-simplex used in Sec. 4.1 to define the singular complex (vertices of A" will
be denoted by vg, v1, . . . , vy). To achieve this replacement we need only
choose a homeomorphism of (A",A",vo) onto (I",i",zo). Any homeomorphism
h: (An,An) — (I, i) will induce an isomorphism

hy: Hy(AAn) =~ H,(In,I)

The identity map &,: A» C A7 is a singular simplex which is a cycle modulo
A and whose homology class {£,} is a generator of the infinite cyclic group
Hn(A"Am). Since Z, is a generator of H,(I",I") and h, is an isomorphism,
either hy {&,} = Z, or hy (&} = —Z,. We want to choose h so that the
former holds. If n = 1, the choice of Z; is such that the simplicial homeomor-
phism h: A' — I with h(vg) = 0 and h(v;) = 1 will have the desired
property (that is, hy {£1} = Z4). If n > 1, we choose an arbitrary homeomor-
phism h: (An,An) — (In,In) such that h(vo) = z0. If hy {&) = —Za we
replace h by hA, where A is a simplicial homeomorphism of A” to itself such
that A(vg) = vo and Ay {&,} = —{£&,} (for example, A is the simplicial map
which interchanges v; and vy and leaves all other vertices of A" fixed). There-
fore, in any event, we can find a homeomorphism h: (A",A",vo) — (I",in,zo)
such that hy {£,} = Z,. Using such a homeomorphism to represent elements
of m,(X,A,x0) by maps a: (An,An) — (X,A) such that a(v) = xo, we see that
pla] = a, {&} = {a}, the latter being the homology class in (X,A) of the
singular simplex a.

For any pair (X,A) with base point xo € A and any n > 0, let A(X,A,x)"
be the subcomplex of A(X) generated by singular simplexes 0: A7 — X having
the property that ¢ maps each vertex of A7 to xy and maps the n-dimensional
skeleton (A7)» of A7 into A. Then A(X,A,x0)""! C A(X,A,x)", and these two
chain complexes agree in degrees < n. Thus we have a decreasing sequence
of subcomplexes A(X,A,x0)" (where n > 0) of A(X) whose intersection is con-
tained in A(A). If X is path connected and (X,A) is n-connected for some
n > 0, we shall see that the inclusion map A(X,A,xo)* C A(X) is a chain
equivalence. The following lemma will be used for this purpose.
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7 vLEMMA Let C be a subcomplex of the free chain complex A(X) such that
C is generated by the singular simplexes of X in it. Assume that to every singular
simplex o: AY— X there is assigned a map P(o): A9 X I — X such that

(a) P(o)(z,0) = a(z) for z € Ad.

(b) Define 6: A? — X by 6(2) = P(o)(z,1). Then 6 is a singular simplex in
C oandifoisinC,6 = o.

(c) If egt: A1 — A4 omits the ith vertex, then P(o) ° (et X 1) = P(o®).

Then the inclusion map C C A(X) is a chain equivalence.

prOOF Let j: C C A(X) be the inclusion chain map and let 7: A(X) — C be
the chain map defined by 7(6) = & [(c) implies that 7 is a chain map]. By (b),
7 °j = lg, hence to complete the proof we need only verify that j ° 7 ~ 1,x).

For any space Y let ho, h1: Y — Y X I be the maps ho(y) = (y,0) and
hi(y) = (y.,1). In the proof of theorem 4.4.3 it was shown (by the method of
acyclic models) that there exists a natural chain homotopy D: A(Y) — A(Y X I)
from A(hg) to A(hq). Define a chain homotopy

D' AX) — AX)

by D'(6) = A(P(0))(D(&,)), where o: A7 — X and §;: A7 C A4 By (¢), D' is a
chain homotopy, and by (a) and the definition of 6, D’ is a chain homotopy
from lax to jer. =

8 TtHEOREM Letxy € A C X and assume that X is path connected and
(X,A) is n-connected for some n > 0. Then the inclusion map AX,A,xo)* C A(X)
is a chain equivalence.

prROOF For o: A7 — X we define P(o) by induction on g to satisfy the prop-
erties of lemma 7, and to have the additional property that if o is in A(X,A,x0)",
then P(o) is the composite

Al x T2 AeZs X

where p is projection to the first factor.

If ¢ = 0, then 0: A — Xis a point of X, and because X is path connected,
there is a map Plo): A X I — X such that P(0)(A% X 0) = o(A%) and
P(o)}(A® X 1) = xo [and if 0(A%) = xo, we take P(o) to be the constant map to
xo]. This defines P(o) for all ¢ of degree O to have the desired properties.

Assume 0 < g < n and that P(o) has been defined for all o of degree < g
to have the properties stated above. Given a singular simplex o: A7 — X, if o
is in A(X,A,xo)", define P(6) = o ° p. If ¢ is not in A(X,A,x0)", (a) and (c) of
lemma 7 define P(c) on A7 X 0 U Ag x I, and welet f: A7 x 0 U A7 x I — X
be this map. There is a homeomorphism h: E¢ X I =~ A? X I such that

h(E1 X 0) = At X 0 U As X I, h(ST1 % 0) = A7 x 1

and
h(Se71 x IUETx 1) = A1 x 1
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Let f': (E9,S771) — (X,A) be defined by f’(z) = f(h(z,0)). Because g < n and
(X,A) is n-connected, there is a homotopy H: (E3,5¢71) x I — (X,A) from f’
to some map of E¢ into A (in fact, by the definition of n-connectedness, there
is even such a homotopy relative to S¢~1). Then the composite

A TS eI x

can be taken as P(o).

In this way P(0) is defined for all degrees ¢ < n. Note that a singular
simplex of degree > n is in A(X,A,xo)" if and only if every proper face is in
A(X,Axo)*. Therefore, if P(o) has been defined for all degrees < q, where
q > n, and if 0: A7 — X, then we define P(6) = o ° p if 0 is in A(X,Ax0)" and
to be any map A7 x I — X satisfying (a) and (¢) of lemma 7 (such maps exist
by the homotopy extension property). Then P(o) will necessarily satisfy (b) of
lemma 7, and we have shown that P(o) can be defined for all ¢ to satisfy
lemma 7. =

For n > 0 we define
H™(X,Ax0) = Hy(A(X,Ax0)", A(X,Ax0)" N A(A))
There are canonical homomorphisms
- — HMW(X,Axp) — H,v V(XA x0) = - - - — HOX,Axg) — Hy(X,A)

9 coroLLARY Assume that A is path connected and for some n > 0,
(X,A) is n-connected. Then the canonical map is an isomorphism for all q

H,™(X,Axo) = Hy(X,A)

PROOF  For any n > 0, A(X,A,xo)* N A(A) is generated by the set of singular
simplexes of A all of whose vertices are at xo. This is independent of n, and
because A is path connected, (A,{xo}) is 0-connected, and it follows from
theorem 8 that the inclusion map A(X,A,x0)* N A(A) C A(A) is a chain
equivalence for all n > 0.

Since (X,A) is n-connected, where n > 0, and A is path connected, X is
also path connected, and by theorem 8, the inclusion map A(X,A,xo)" C A(X)
is a chain equivalence. The result follows from these facts, using exactness
and the five lemma. =

5 THE HUREWICZ ISOMORPHISM THEOREM

The main result of this section asserts that if X and A are path connected and
for some n > 1, (X,A) is n-connected, then the Hurewicz homomorphism ¢
induces an isomorphism ¢’ of @, 1(X,A,x) with H, 1(X,A). This result is
equivalent to a homotopy addition theorem which asserts that the sum of the
(n + 1)-dimensional faces of an (n + 2)-simplex is the homotopy boundary of
the identity map of the simplex. We prove both these theorems simultaneously
by induction on n.
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In the proof we shall make essential use of the complexes A(X,A,x¢)” and
of corollary 7.4.9. Let a: (An,An(Am)0) — (X,A,x,) represent an element of
To(X,A,x0). Then « is a singular simplex in A(X,A,xo)" ! and represents a
homology class {a} € H,» 1(X,A,xo). Since any element of 7,(X,A,xo) can be
represented by such a map «, the Hurewicz homomorphism ¢": m,(X,A,x0) —
H,(X,A) factors into the composite

(XA x0) 1> H,m (XA xo) — Hn(X,A)
and there is a commutative diagram
Ta(X,A%0) > mh(X,A,x0)
oy e
H(X,A) « H,"V(X,A,x0)
We now formulate the propositions corresponding to the relative and

absolute Hurewicz isomorphism theorems.

1 prorositrion @, (n > 2). Let A be path connected and let (X,A) be
(n — 1)-connected. Then ¢’ is an isomorphism

o' (X, A x0) =~ Hy(X,A)

2 proposition @, (n > 1). Let X be (n — 1)-connected. Then ¢’ is an
isomorphism

@' m(X,x0) = Hn(X,x0)

We shall prove both these propositions simultaneously by induction on n,
together with a third proposition, which we now formulate. For n > 2, each
face map e} 1 is a map of triples

€91 (An,An’UO) — (An+1,<An+1>n*1’Ul>
eh1: (AMAnpg) — (An+1 (Ant1)n=1 ) 0<i<n+1
For vertices v and v’ of A"*1 we use [vv'] to denote the path class of the

linear path in A»*1 from v to v’. We define an element by € 71(A2%,00) and, for
n > 2, an element by, € 7,(An*1,(An*1)n=1 ) by

b= [votn] * [v1v2] * [V200]
by = (hpsevles®])les?]lest] M es®] 2
by = hpgol€de1] + 2 (=1)i[ei1] n>3

O<i<n+1
For n = 1 let j: (A2,09) C (A%,00) and for n > 2 let j: (An+1,(An+1yn=140) C
(An+1 (Ant1)n=1 450). The following proposition corresponds to the homotopy
addition theorem.
3 proposiTION B, (n > 1). jub, = 0.

The simultaneous proof of propositions 1, 2, and 3 will consist of the fol-
lowing five parts:
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(a) Proof of By

(b) Proof that By = @,

(¢) Proof that &, Dy, ..., ,0, =B, forn>2
(d) Proof that B, = @, forn > 2

(e) Proof that ®, = @, for n > 2

(a) proOF oF By We must prove that jub; = 0. But juby € 71(A2,00), and
m1(A2,00) = 0 because A2 is contractible. =

(b) PrROOF THAT B; = ®; Let X be path connected. We must prove that
@' 71 (X,x0) =~ H1(X,xp). Because X is path connected, the inclusion map
A(X,{x0},x0)° C A(X) is a chain equivalence, and we need only show that

¢ mi(Xxo) = H1O(X,{x0},%0)

If a (ALAY) — (X,xo) represents an element [a] € 71(X,xo), then
¢”[a] = {a}, where {a} is the homology class in H;O(X,{x0},x0) of the
singular cycle a. Given a singular 1-simplex o: (ALAY) — (X,x0) in A(X,{x0},%0)0,
it determines an element [o] € 71(X,x0), and therefore an element
[o] € 71(X,x0). If o is the constant singular 1-simplex at xo, then clearly,
[6]' = 0. Because 71(X,xo) is abelian and Ay(X,{x¢},x0)? is the free abelian
group generated by the singular simplexes in it, there is a homomorphism

’4/: Al(X,{xo},xo)O/Al(xo) e ’7T’1<X,X0>

such that (o) = [0]’. We shall show, by using By, that the composite

Aa(X, (x0},%0)°/ Aa(xo) > Ar(X,{x0},%0)0/A1(x0) ¥ 1(X,x0)
is trivial. Given o: (AZ2,(A2)0) — (X,x¢), let 0@, @, and o® be the faces of o,
as usual. Then

Yolo] = [0®] + [6©] — [6®]" = [(0® * o) * (cD)71)’

=mn(o | A% ,([votn] * [0102] * [0200]) =0 4 jy b1 =0

Therefore ¢ defines a homomorphism

'4/’: H1(0)<X,{XQ},JC()> —> 7T/1<X,XO>

and this is easily seen to be an inverse of ¢’’. =

(c) ProoF THAT ®y, . . ., ®, ;1 = B, For n > 2 Consider the commutative
diagram

77"+1(An+1,An+1’UO> T AP HL (AT 1)n=1 15)
N =
2] Wn(Anﬂ’(AnH)nﬂ’Uo)
7. N

ma(A7*1,00) T 1((AT 1) 1,0)

The top row, being part of the homotopy sequence of the triple
(An+1, Ant1 (An*1)n=1) is exact. The bottom row, being part of the homotopy
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sequence of the pair (An+1 (An+1)n=1) js also exact. From the exactness of the
homotopy sequence of the pair (An*1,An+1) and the fact that A"*1 is contract-
ible, it follows that 9 is an isomorphism. Therefore

ker j, = im ¢’ = im (iy ° 9) = im iy = ker 0"

Thus B, is equivalent to the equation 9”'(b,) = 0. We prove the latter, giving
one proof for n = 2 and another for n > 2.
If n = 2, we have

0"(b2) = (hivg0,)0"'[€3°])0" [e32]0" [e3] 10" [e53] 1
To calculate 9”[esi], let &: (AZ,A2,00> C (A2,A2,vo) be the identity map. Then

[€] € m2(A2,A2,09), and because 71(A2,00) is infinite cyclic (since A2 is homeo-
morphic to S1), it follows from ®; that g: 7T1(A2,Uo> =~ Hl(AZ,vo). There is a
commutative square
72(A2,A2,00) 5 71(A2,00)
) =|e
Hy(A2,A2) 5 Hy(A2,00)
and 0plE] = 2{¢} = (¢@ + £O — (D) = (@) = ¢[w]
where w: (AL,A1) — (A2,00) is the path w = (&2 * £O) * (§1)~1, (The 2-chain
£ 4+ £ — £O js homologous to w because it is easy to find singular
2-simplexes 07 and o5 in A2 such that
0@ = €0 o) = {2 % £O 0,2 = £&@
02(0) — g(l) 02(1) — 5(2) %* 6(0) 02(2) — (5(2) E] 5(0)) % <$(1)>'1

Then 9(01 — 02) = &2 4 &0 _ ¢ _ ) Because g is an isomorphism, it
follows that

(€] = [w] = [vovs] » [1102] * [0200]

To return to the calculation of 3”[es?], we have

0"[es’] = 0" (es!)4lé] = (es'| A2),0[¢]
= [esi(vo)es(v))] * [esi(vr) e37(3)] * [es?(v2) €3%(v0)]

Using this, direct substitution into the right-hand side of the equation for
0”'(bz) shows that 3"(bg) = 0.

For n > 2 note that (A»*1)n~1 contains the two-dimensional skeleton of
An*1. Therefore (A"*1)~1 js simply connected (because An*1 is simply con-
nected). Similarly, for ¢ < n — 2, Hy((An+1)n~1,05) =~ H,(A"1,0,) = 0. By
dy, ..., &, it follows that (Ant1)n=1 s (n — 2)-connected, and by ®, .,
there is an isomorphism

@: Ta1 (AP 1)1 1) =~ Hy_y((Av1)7=1 1)

Hence, to complete the proof it suffices to show that @3”(b,) = 0. This
follows from the equalities
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90" (ba) = 2" p(ba) = 0"(Z (= 1)iehi1) = 00 {ns1) = Vind{Enar) =0 =
(d) PrOOF THAT B, => ®, For n > 2 The argument is similar to the proof of
part (b) above. The map ¢’ factors into the composite

(XA x0) T H,m D(X,Ax0) = Ha(X,A)

If a: (An,An00) — (X,Ax0) is a map such that a maps all the vertices to xo,
then ¢"[a] = {a} € H,"D(X,A,x0). To define an inverse of ¢, if
o: (A",A”,(A")O) — (X,Ax9) is a singular simplex in A,(X,A,xo)" 1, then
[o] € m(X,Ax0) and qlo] = [0]" € 7, (X,Axp). If o(A") C A, then [o] = 0,
and because 7,(X,A,xo) is abelian, there is a homomorphism

Y Ap(XAx0)" 1/ (An(X,Ax0)" 1 N AL(A)) — (XA, x0)
such that Y(o) = [o]'.
We show that the composite

Yo 0t Ay 1(XAx0) 1/ (An 1(XAx)" ™ N A, 1(A)) — 7r(X,Ax0)

is trivial. This follows from B,, because if
o (AmH1(Ant1yn=1 (An+1)0) 5 (X, A xo)
then
$a(0) = Z (—1)[a®]) = (o | (An+1,(An1)2=1),(Dy)
= N0yz(bn) = 0
Therefore ¢ defines a homomorphism
Y Hy " D(X A x) — 70 X,A %)

such that {0} = [o], and ¥’ is easily seen to be an inverse of ¢”’. =
(¢) PrROOF THAT ®, = ®, Forn > 2 Forn > 2, if X is (n — 1)-connected,

then the pair (X,{x0}) is (n — 1)-connected and m,(X,{x0},%0) is canonically

isomorphic to 7,(X,x9) = 7n(X,x0). Then @, results from @, applied to the
pair (X,{xo}). =

This completes the proof of propositions 1, 2, and 3. From proposition 1
we obtain the following relative Hurewicz isomorphism theorem.

4 THEOREM Letxo € A C X and assume that A and X are path connected.
If there is an n > 2 such that 7y(X,Ax0) = 0 for g < n, then Hy(X,A) = 0
for g < nand ¢’ is an isomorphism
Q" (XA x0) = Hp(X,A)
Conversely, if A and X are simply connected and there is an n > 2 such that
Hy(X,A) = 0 for g < n, then mo(X,A,xo) = 0 for ¢ < n and g is an isomorphism
@ (X, AX0) = Hy(X,A) ®

Similarly, from proposition 2 we obtain the following absolute Hurewicz
isomorphism theorem.
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3 THEOREM Let xo € X and assume that there is n > 1 such that
m¢(X,x0) = 0 for g < n. Then Hy(X,x9) = 0 for ¢ < n and ¢’ is an isomorphism

@' ma(X,x0) = Hy(X,x0)

Conversely, if X is simply connected and there is n > 2 such that Hy(X,xo) = 0
for g < n, then my(X,x9) = 0 for ¢ < n and ¢ is an isomorphism

@: mp(X,x0) = Hp(X,x0) ™

In the absolute case when X is simply connected and in the relative case
when X and A are simply connected, each of these theorems asserts that the
first nonvanishing homotopy group is isomorphic to the first nonvanishing
homology group.

6 coroLLARY Forn > 1 there is a commutative diagram of isomorphisms
Tne1f(EMFL,S%po) S ma(S™,po)
% Je
Hyy(En1,87) 25 Hy(Sm,po)

PROOF The diagram is commutative, by theorem 7.4.3a, and both horizontal
maps are isomorphisms because E**1 is contractible [and because the homo-
topy and homology sequences of (E"*1,57,p,) are exact]. The right-hand ver-
tical map is an isomorphism, by proposition 2 and the fact that (in the case
n = 1) m1(S1,po) is abelian. =

The following useful consequence of corollary 6 is called the Brouwer
degree theorem.

7 coroLLARY For n > 1 two maps f, g: S* — S* are homotopic if and
only if fo = ge: Ha(S") — Hu(S"). Similarly, two maps f, g (E**1,57) —
(En*1,87) are homotopic if and only if fo, = gy : Hno1(EPT1,8%) — Hy 4 (En*1,87),

PROOF We consider the absolute case first. Given maps f, g: S* — S, there
exist homotopic maps f’ and g’, respectively, such that f'(po) = g'(po) = po
(because S» is path connected). Because S» is n-simple, f’ and g’ are freely
homotopic if and only if they are homotopic as maps from (S%,po) to (5%,po).
Therefore f~ g if and only if [f'] = [¢'] in 7,(S%po). By corollary 6,
[f1=1[g] if and only if ¢[f'] = ¢[g'], and from the definition of g,
o[ f'] = olg’] if and only if
fe = g: Hu(S"po) — Hu(S"po)

Since there are commutative squares

Hy(S") = Hu(S"po) Hy(S") = Hu(8"po)
fel 2 &), S
Hy(S") = Hy(S™,po) Hy(S") = Hu(S"po)

the result follows.
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For the relative case note that because E"*1 is contractible, it follows
from the homotopy extension property of (E**1,S%) that two maps
f, g (E**1,8%) — (En*1,8%) are homotopic if and only if f| S, g| S S» — S»
are homotopic. Since there are commutative squares

H,,1(E**1,57) Zi_) H,(S™) H,,1(E**H, Sn) H,(S")
A s & LS.
H,,1(En+1,87) % H,(S") H, 1 (Er*1,87) %) H,(S7)

the relative case follows from the absolute case. =

8 coroLLARY Forxy € X the map
Y [S*,po; X,x0) — Hom (7,(S™,po), mn(X,x0))
sending [a] to ay is an isomorphism.

proOF This follows from corollary 6, because the fact that 7,(S,po) is infinite
cyclic implies that there is an isomorphism

B: Hom (m,(5%,po), ma(X,x0)) = mn(X,x0)

sending a homomorphism A to A(a), where a € m,(S%,po) is the homotopy
class of the identity map. Then, (8 ° ¥)[a] = agla) = [a], and so ¢ is an
isomorphism. =

The following useful consequence of the relative Hurewicz isomorphism
theorem is known as the Whitehead theorem.

9 tHEOREM Let X and Y be path-connected pointed spaces and let
£ (Xxo) — (Y.yo) be a map. If there is n > 1 such that

fe m(Xox0) = 7o(Yy0)
is an isomorphism for ¢ < n and an epimorphism for q = n, then
fa: Hy(X,x0) — Hy(Y,yo)

is an isomorphism for q < n and an epimorphism for ¢ = n. Conversely, if
X and Y are simply connected and f is an isomorphism for ¢ < n and an
epimorphism for q = n, then f is an isomorphism for ¢ < n and an epimor-
phism for g = n.

PROOF Let Z be the mapping cylinder of f. There are inclusion maps
©:XCZ and §: Y C Z and a deformation retraction 7: Z — Y such that
f = r°i.Thenr: (Z,yo) — (Y,yo) induces isomorphisms r4: 7,(Z,yo) = 74(Y,yo)
and 1y : Hy(Z,yo) = Hy(Y,yo) for all q. Because X and Y are path connected,
so is Z, and 7y(Z,x0) = m4(Z,yo). Therefore r: (Z,xo) — (Y,yo) also induces
isomorphisms r4: 74(Z,x0) = mo(Y,yo) and 7, : Hy(Z,x0) = Hy(Y,yo) for all q.
It follows that we can replace (Y,yo) in the theorem by (Z,x0) and the condi-
tions un f4 and f, by the corresponding conditions on iy aud iy . From the
exactness of the homotopy sequence of (Z,X,xo), it follows that iy is an
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isomorphism for ¢ <<n and an epimorphism for ¢ = n if and only if
7¢(Z,X,x0) = 0 for g < n. Similarly, from the exactness of the homology
sequence of the triple (Z,X,xo), it follows that i, is an isomorphism for g < n
and an epimorphism for g = n if and only if Hy(Z,X) = 0 for g < n. The
result now follows from the relative Hurewicz isomorphism theorem 4. =

6 CW COMPLEXES

For homotopy theory the most tractable family of topological spaces seems to
be the family of CW complexes (or the family of spaces each having the same
homotopy type as a CW complex). CW complexes are built in stages, each
stage being obtained from the preceding by adjoining cells of a given dimen-
sion. The cellular structure of such a complex bears a direct connection with
its homotopy properties. Even for such nice spaces as polyhedra it is useful to
consider representations of them as CW complexes, because such complexes
will frequently require fewer cells than a simplicial triangulation.

In this section we shall investigate CW complexes and related concepts.
In Sec. 7.8 we shall show that any topological space can be approximated by
a CW complex which is unique up to homotopy. We begin with some results
about a space X obtained from a subspace A by adjoining n-cells (defined in
Sec. 3.8).

1 LEmma If X is obtained from A by adjoining n-cells, then X X 0 U A X I
is a strong deformation retract of X X 1.

PROOF For each n-cell e* of X — A let

fii (EnS"71) — (e€)7)
be a characteristic map. Let D: (E» X I) X I — E" X I be a strong deforma-
tion retraction of E® X I to E® X 0 U S»~1 X I (which exists, by corollary

3.2.4). There is a well-defined map D;: (¢j* X I} X I — e* X I characterized
by the equation

Di((filz)1), ) = (fi X L)(DztE))  z€Ent t el
Then thereisamap D': (X X I) X I—-> X X Isuchthat D’ |(e; X I) X I = D;

and D'(a,t,t') = (a,t) fora € A, and ¢, ¢’ € I, and D’ is a strong deformation
retractionof X X [to X X O U A X I. =

2 cororLarRY If X is obtained from A by adjoining n-cells, then the
inclusion map A C X is a cofibration. ®

3 LEmMa Let X be obtained from A by adjoining n-cells and let (Y,B) be
a pair such that 7,(Y,B,b) = 0 for all b € B if n > 1 and such that every
point of Y can be joined to B by a path if n = 0. Then any map from (X,A)
to (Y,B) is homotopic relative to A to a map from X to B.
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prooF This follows from theorem 7.2.1 by a technique similar to that in
lemmma 1 above. =

A relative CW complex (X,A) consists of a topological space X, a closed
subspace A, and a sequence of closed subspaces (X,A)* for k > 0 such that

(a) (X,A)0 is obtained from A by adjoining 0-cells.

(b) For k > 1, (X,A)* is obtained from (X,A)*~1 by adjoining k-cells.
() X = U (X,A)*.

(d) X has a topology coherent with {(X,A)*}.

In this case (X,A)* is called the k-skeleton of X relative to A. If X = (X, A)

for some n, then we say dimension (X — A) < n. An absolute CW complex X

is a relative CW complex (X, @), and its k-skeleton is denoted by X*.
Following are a number of examples.

4 If (K,L) is a simplicial pair, there is a relative CW complex (|K|,|L|),
with (|K|,|L))F = |K¥ U LJ.

5 If (X,A) is a relative CW complex, for any k the pair (X, (X,A)*) is a rela-
tive CW complex, with

X,A)x qg <k

i = =
=, 15y

Similarly, the pair ((X,A)%, A) is a relative CW complex, with

(XA qg<k
(XA g>k

6  Asin example 3.8.7, for i = 1, 2, or 4 let F; be R, C, or Q, respectively,
and for g > 0 let P,(F;) be the corresponding projective space of dimension g
over F;. Then Py(F;) is a CW complex, with

q\* 1 - Pq<F1> k>1q

7 Eris a CW complex, with (EM* = po for k <<n — 1, (En)p"1 = S
and (E" = En for k > n.

8 [Iisa CW complex, with (I)° = I and (I)* = I fork > 1.

9 If (X,A) and (Y,B) are relative CW complexes and either X or Y is locally
compact, then (X,A) X (Y,B) is also a CW complex,! with

(X,A) X (Y,B)f = U, ok (XA) X (Y, B UX X BUA X Y
10 If (X,A) is a relative CW complex, so is (X,A) X I, with
(XXLAXIF=(XAFXITUXAFF1XITIUAXI

(xAy, Ay =

11t is not true that the product of two CW complexes is always a CW complex. For a counter-
example, see C. H. Dowker, Topology of metric complexes, American Journal of Mathematics,
vol. 74, pp. 555-577, 1952.
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11 If (X,A) is a relative CW complex, then X/A is a CW complex, with
(X/A) = (X,A)F/A.

A subcomplex (Y,B) of a relative CW complex (X,A) is a relative CW
complex such that Y is a closed subset of X and (Y,B)F = Y N (X,A)* for all k.
If (Y,B) is a subcomplex of (X,A), then (X, A U Y) is a relative CW complex,
with (X, A U Y)* = (X,A)* U Y for all k. In particular, if X is a CW complex
and A is a subcomplex of X, then (X,A) is a relative CW complex. A CW pair
(X,A) consists of a CW complex X and subcomplex A (hence a CW pair is a
relative CW complex).

The definition of relative CW complex suggests its inductive construction.
We start with a space A, attach 0-cells to A to obtain a space Ay, attach 1-cells
to Ap to obtain A;, and continue in this way to define Ay for all k > 0.
Letting X be the space obtained by topologizing U Ay with the topology
coherent with {Ag} k.0, then (X,A) is a relative CW complex, with (X,A)¥ = A;.
12 taeorEM If (X,A) is a relative CW complex, then the inclusion map
A C X is a cofibration.
prooF This follows from corollary 2, using induction and the fact that X x I
has the topology coherent with {(X,A)k X I}y, =

13 taeorem Let (X,A) be a relative CW complex, with dimension
(X — A) < n, and let (Y,B) be n-connected. Then any map from (X,A) to
(Y,B) is homotopic relative to A to a map from X to B.

prOOF This follows, using induction, from corollary 7.2.2, lemma 3, and
theorem 12. =

14 coroLLarRY Let (X,A) be a relative CW complex and let (Y,B) be
n-connected for all n. Then any map from (X,A) to (Y,B) is homotopic rela-
tive to A to a map from X to B.

proor Let f: (X,A) — (Y,B) be a map. It follows from theorems 12 and 13
that there is a sequence of homotopies

Hy: (X,A) X I — (Y,B) k>0
constructed by induction on k such that
(a) Hp(x,0) = f(x) for x € X.
(b) Hy(x,1) = Hy, 1(x,0) for x € X.

(c) Hy is a homotopy relative to (X,A)*¥~1.
(d) Hx((X,A)¥ x 1) C B.

Then a homotopy H: (X,A) X I — (Y,B) with the required properties is
defined by
t— (1 — 1/k) ) 1
= ] - =<t <1 —
Hex) H’““l(’“’ (/K = 1/(k + 1) R
H(x,1) = Hg(x,1) x € (XA =

15 temma If X is obtained from A by adjoining n-cells, then for n > 1,
(X,A) is (n — 1)-connected.

=
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prROOF For k < n — 1let f: (E¥,Sk~1) — (X,A) be a map. Because f{E¥) is
compact, there exist a finite number, say, e1, . . . , en, of n-cells of X — A
such that f(E¥) Ce; U ... Uepn UA. For 1 <i<m let x; be a point of
e; — é. Eachof thesets Y = A U (e1 —x1) U - U (ep, — xp) and ¢; — ¢;
for 1 < i < m intersects f(E¥) in a set open in f{E¥). There is a simplicial
triangulation of E¥, say K, such that (identifying |K| with E¥) for every
simplex s € K either f{|s|) C Y or for some 1 <i < m, f(s|) C ¢; — é;. Let A’
be the subpolyhedron of E* which is the space of all simplexes s € K such
that f{|s|) C Y, and for 1 < i < m let B; be the subpolyhedron which is the
space of all simplexes s of K such that f{|s]) C ¢; — ¢;. Then S¥1 C A,
EF =A"UBy U .- UBy, and if i, then B, — A’ is disjoint from
Bj — A’. Let B; = B; N A’ and observe that (B;,B;) is a relative CW complex,
Wlthdlm(B—L—Bl) Skgn— 1.

For 1 < i < m the pair ((¢; — €;), (¢; — €;) — x;) is homeomorphic to
(Er — S»=1, (Er — S»~1) — 0) and has the same homotopy groups as (E»,S7~1).
By corollary 7.2.4, (En,5"71) is (n — 1)-connected. It follows from theorem 13
that f | (B;,B;) is homotopic relative to B; to a map from B; to (¢; — ;) — x;.
Because B; — B, is disjoint from B; — B for i 544, these homotopies fit
together to define a homotopy relative to A’ of f to some map f' such that
f/(EF) C Y. Clearly, A is a strong deformation retract of Y. Therefore f’ is
homotopic relative to S$¥71 to a map f” such that f"/(E¥) C A. Then
f~f"~{f", all homotopies relative to S¥~1. Therefore (X,A) is (n — 1)
connected. =

16 coroLLarYy If (X,A) is a relative CW complex, then for any n > 0,
(X, (X,A)") is n-connected.

PROOF  We prove by induction on m that ((X,A)™, (X,A)") is n-connected for
m > n. Since (X,A)"*1 is obtained from (X,A)" by adjoining (n + 1)-cells,
it follows from lemma 15 that ((X,A)"*1, (X,A)") is n-connected. Assume
m >n + 1and that ((X,A)"~1, (X,A)") is n-connected. By lemma 15, the pair
(X,A)m, (X,A)m~1) is (m — 1)-connected, and since n <m — 1, it is also
n-connected. Then 7o((X,A)?) — mo((X,A)™~1) and 7o((X,A)m"1) — 7o((X,A)™)
are both surjective, whence m((X,A)") — mo((X,A)™) is also surjective.
Furthermore, for any x € (X,A)", it follows from the exactness of the homotopy
sequence of the triple ((X,A)", (X,A)""1, (X,A)"), with base point x, that
m((X,A)™, (X,A)", x) = 0 for 1 < k < n. By corollary 7.2.2, (X,A)™, (X,A)")
is n-connected.

To show that (X, (X,A)") is n-connected, if 0 < k < n and a: (E¥,S¥71) —
(X, (X,A)"), then because a(EF) is compact and X has a topology coherent
with the subspaces (X,A)™, there is m > n such that «(E¥) C (X,A)™. Hence
o can be regarded as a map from (E¥,S¥-1) to ((X,A)™, (X,A)*) for some m > n.
Because ((X,A)™, (X,A)") is n-connected, a is homotopic relative to Sk-1 to
some map of EF to (X,A)r. =

Given relative CW complexes (X,A) and (X',A’), a map f: (X,A) — (X",A")

is said to be cellular if f{(X,A)¥) C (X’,A")¥ for all k. Similarly, a homotopy
F: (X,A) X I — (X',A") is said to be cellular if F((X,A) x I)¥ C (X’,A")* for
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all k. Analogous to the simplicial-approximation theorem is the following
cellular-approximation theorem.

17 tHEOREM Given a map f: (X,A) — (X',A’) between relative CW com-
plexes which is cellular on a subcomplex (Y,B) of (X,A), there is a cellular map
g: (X,A) — (X",A") homotopic to f relative to Y.

prOOF It follows from corollary 16, theorem 13, and theorem 12 that there
is a sequence of homotopies Hy: (X,A) X I —> (X',A’) relative to Y, for k > 0,
such that

(@) Ho(x,0) = f(x) for x € X.

(b) Hy(x,1) = Hy,1(x,0) for x € X.

(c) Hyis a homotopy relative to (X,A)k~

(d) Hi((X,A) X 1) C (XA
Then a homotopy H: (X,A) X I — (X’,A’) with the desired properties is
defined by

_ t—(1 = 1/k) 1 o
H(x’ﬂ—H"*l(’c’ (1/k)-1/(k+1)> l-gstsl-73

H(x,1) = Hy(x,1) x € (XA =

18 coroLLARY Any map between relative CW complexes is homotopic to
a cellular map. If two cellular maps between relative CW complexes are
homotopic, there is a cellular homotopy between them. =

[

1

A continuous map f: X — Y is called an n-equivalence for n > 1 if f
induces a one-to-one correspondence between the path components of X and
of Y and if for every x € X, fu: my(X,x) — 7g(Y,f(x)) is an isomorphism for
0 < g < n and an epimorphism for ¢ = n (the condition concerning the case
q = n is sometimes omitted in the definitions occurring in the literature).
A map f: X — Y is called a weak homotopy equivalence or co-equivalence if
f is an n-equivalence for all n > 1. The following results are immediate from
the definition and from corollary 7.3.15.

19 A composite of n-equivalences is an n-equivalence. =
20 Any map homotopic to an n-equivalence is an n-equivalence. ®
21 A homotopy equivalence is a weak homotopy equivalence. =

Let f: X — Y be a map and let Z; be the mapping cylinder of f. Then
f =r°i, where 11 Z; — Y is a homotopy equivalence. Therefore f is an
n-equivalence if and only if i: X C Z; is an n-equivalence. It follows from the
exactness of the homotopy sequence of (Z;X) and from corollary 7.2.2 that i
is an n-equivalence if and only if (Z,X) is n-connected.

22 tHEOoREM Let f: X — Y be an n-equivalence (n finite or infinite) and
let (P,Q) be a relative CW complex, with dim (P — Q) < n. Given maps
g Q— Xandh: P — Ysuch that h| Q = f ° g there existsamap g': P — X
such that g' | Q = g and f ° g =~ h relative to Q.

prOOF Let Z; be the mapping cylinder of f, with inclusion maps i: X C Z;
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and j: Y C Zj, and retraction 7: Z; — Y a homotopy inverse of j. Then in

Qcr

gi ij °h

X 5z
a homotopy i ° g ~j ° h| Q can be found whose composite with r is constant.
By theorem 12, there is a map h’: P— Z;such that b’ | Q = i ° g and such that
r° h' =re°je° h relative to Q. We regard h’ as a map from (P,Q) to (Z;,X).
Since (Z;,X) is n-connected and dim (P — Q) < n, it follows from theorem 13
that A" is homotopic relative to Q to some map g': P — X. Then g’ | Q = gand

feg =rciog ~reh~rejoh=nh

all the homotopies being relative to Q. Hence g’ has the desired properties. ®

23 cororLary Let f: X — Y be an n-equivalence (n finite or infinite) and
consider the map

fur [B3X] — [B;Y]

If Pis a CW complex of dimension < n, this map is surjective, and if
dim P < n — 1, it is injective.

PrROOF The first part follows from theorem 22 applied to the relative
CW complex (P, @).

For the second part, we apply theorem 22 to the relative CW complex
(P X I, P X 1). Given gy, g1: P — X such that f° gy ~ f° gy, there is a map
g: P X I — X such that g(z,0) = go(2) and g(z,1) = gi(z) for z € P and a map
h: P X I— Ysuchthath|P X I =f° g Sincedim (P X I) <n, by theorem 22
there is a mapping g": P X I — X such that g |P X I =g Then g is a
homotopy from gy to g;, showing that [go] =1lg1]. =

24 coroLLARY A map between CW complexes is a weak homotopy equiv-
alence if and only if it is a homotopy equivalence.

PrOOF It follows from statement 21 that a map which is a homotopy equiv-
alence is always a weak homotopy equivalence. Conversely, if f: X — Yis a
weak homotopy equivalence between CW complexes, it follows from corol-
lary 23 that f induces bijections

for [V:X] - [Y3Y] fa [X:X] — [X;Y]
If g2 Y — X is any map such that f«lg]l = [1y], then f ° g ~ 1y, and also
flgofl=[f>g°fl=0lyefl = [f° 1d = fullu]
Therefore [g > f] = [1x] or g ° f ~ 1y, and so f is a homotopy equivalence. ®

Thus, for CW complexes the concepts of homotopy equivalence and weak
homotopy equivalence coincide. The following theorem is a direct consequence
of the Whitehead theorem 7.5.9.
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25 THEOREM A weak homotopy equivalence induces isomorphisms of the
corresponding integral singular homology groups. Conversely, a map between
simply connected spaces which induces isomorphisms of the corresponding
integral singular homology groups is a weak homotopy equivalence. %

7 HOMOTOPY FUNCTORS

In this section we shall study a general class of functors on the homotopy
category of path-connected pointed spaces. The main result characterizes, on
the subcategory of CW complexes, those functors of the form 7Y for some Y
in terms of simple properties. In the next section we shall apply this result to
prove the existence of approximations to any space by a CW complex.!

In a category C, given objects A and X and morphisms fo: A — X and
fi1: A — X, an equalizer of f, and f; is a morphism j: X — Z such that

(@) j°fo=1°fi
(b) If j: X — Z' is a morphism in € such that ' ° fo = j ° fi, thereis a
morphism g: Z — Z’ such thatj/ = g ° .

Note that it is not asserted in condition (b) that g is unique.
We define @ to be the homotopy category of path-connected pointed
spaces having nondegenerate base points.

1  Lemma The category & has equalizers.

prROOF Let A and X be arbitrary objects of & and let fo: A —> X
and f1: A — X be maps preserving base points. Let Z be the space obtained
from the topological sum Xv (A X I) by identifying (a,0) € A X I with
fola) € X, (a,1) € A X I with fi(a) € X for all a € A, and (ao,t) € A X I with
(a0,0) (ao the base point of A) for all ¢ € I. Then Z is an object of C and the
inclusion map j: X C Z has the property that j ° fo >~ ° fi [in fact, the com-
posite A X I C XV (A X I)— Z is a homotopy from j° fo to j° fi].
Furthermore, if j: X — Z’ is a map such that ' ° fo ~ " ° f1, there is a map
G: Xv(A XI)— Z such that G| X =f and G|A X I is a homotopy
from § ° fo to j/ ° fi. Then G is compatible with the collapsing map
k: Xv (A X I)— Z,so there is a map g: Z — Z' such that G = g ° k. Then
i’ = g ° j, and therefore [j]: X — Z is an equalizer of [ fo] and [ f1] in Cp. =

2 1emMA Let {Y,}ns0 be objects of & that are subspaces of a space Y in
Co such that Y, C Y, is a cofibration foralln > 0,Y = U, Y,, and Y has
the topology coherent with {Y,}. Let in: Yp C Ypi1, 1pt Yy C Yy, and
jn: Yo C Y be the inclusion maps. Then the homotopy class [{jn}]: V Yn — Y
is an equalizer in Cy of the homotopy classes

1The techniques of this section are based on E. Brown, Cohomology theories, Annals of
Mathematics, vol. 75, pp. 467-484, 1962.
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Vi VY, > VY, and [V LV Y, \VY,

PROOF  Since jui1 ° iy = jn° 1, it follows that {jn} o Vi, = {ju} ° V L,.
Givena map j: V' Y, — Z'such that j/ o Vi, ~ ° \V 1,,let j: Y, — Z’ be
defined by 77 = j'| Y, Then fn+1 ° in =~ 7, and using the fact that Y, C Y4
is a cofibration and by induction on n, there is a sequence of maps g,: Y, — Z’
such that g, ~ j; and gu.1° i = gp. Let gt Y — Z’ be the map such that
gl Yy = gn. lfj= {ju}): VY, — Y, then g ° j = j completing the proof. =

A homotopy functor is a contravariant functor H from ¢ to the category
of pointed sets such that both of the following hold:

(@) If[j]: X — Z is an equalizer of [ fo], [ f1]: A — X and if u € H(X) is
such that H([ fo])u = H([ f1])u, there is v € H(Z) such that H([j v = u.
(b) If {X,}, is an indexed family of objects in ¢y and iy: X, C V X,,
there is an equivalence

{H[iy]}\: H(V X)) = X H(X,)

If f: X — Y is a base-point-preserving map and H is a homotopy functor,
we shall also use H( f) for H({f]). If X C X’ and u € H(X'), we use u | X for
H(i)u, where i: X C X"

If X is a one-point space, and X; and X, are both equal to X, then
X1V X is also equal to X, and the equivalence of condition (b)

(H(iy),H(iz)}: H(X;v X2) =~ H(X;) X H(X)

corresponds to the diagonal map of H(X) to H(X) X H(X). Because this is a
bijection, H(X) consists of a single element.
Following are some examples.

3 Let Y be a pointed space. Then the functor #¥ on & defined as in
Sec. 1.3 (that is, 7¥(X) = [X;Y ] for an object X in &) is a homotopy functor.

4 Fix an integer n >0 and an abelian group G. Then the functor
H(X) = H*X,x0; G) (singular cohomology) on ¢ is a homotopy functor called
the nth cohomology functor with coefficients G.

3 Let G be an arbitrary group (possibly nonabelian). There is a homotopy
functor H such that H(X) is the set of all homomorphisms 71(X,x) — G with
the trivial homomorphism as base point.

An important result of this section is that on the subcategory of pointed
path-connected CW complexes every homotopy functor is naturally equivalent
to 7Y for a suitable pointed space Y.

6 1EmmMA Let v: SX — SX v SX be the comultiplication map. If X is in Gy
and H is a homotopy functor, the composite

H(SX) x H(SX) Z2@HENY, prox y sx) HY, pisx)

is a group multiplication on H(SX), which is abelian if X is a suspension. If H
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is a homotopy functor taking values in the category of groups, the two group
structures on H(SX) agree.

prooF Each of the group properties for this multiplication follows from the
corresponding H cogroup property of ». The final statement of the lemma
follows from theorem 1.6.8, because the two multiplications in H(SX) are
mutually distributive. =

In particular, for any homotopy functor H, H(S9) is a group for g > 1
and abelian for ¢ > 2 and is called the gth coefficient group of H. Thus the
qth coefficient group of the functor «¥ of example 3 is 7,(Y). The gth coefhi-
cient group of the nth cohomology functor with coeflicients G of example 4
is 0 if ¢ # n and isomorphic to G if ¢ = n. The gth coefficient group of the
functor of example 5is Gif g = 1 and 0 if ¢ > 1.

If Y is an object of ¢, and H is a homotopy functor, any element
u € H(Y) determines a natural transformation

T, 7¥ —- H
defined by T,([f]) = H([f])(u) for [ f] € [X;Y]. For a suspension SX, T, is a
homomorphism from 7¥(SX) = [SX;Y ] to the group H(SX), with the multipli-
cation of lemma 6 (because both group multiplications are induced by the

comultiplication »: SX — SXv §X). An element u € H(Y) is said to be
n-universal for H, where n > 1, if the homomorphism

Ty w¥(89) — H(S9)

is an isomorphism for 1 < ¢ < n and an epimorphism for ¢ = n. An element
u € H(Y ) is said to be universal for H if it is n-universal for all n > 1, in which
case Y is called a classifying space for H.

7 THEOREM Assume that H is a homotopy functor with universal elements
u € HY)and v € H(Y') and let f: Y — Y’ be a map such that H( f)u' = u.
Then f is a weak homotopy equivalence.

PROOF Since Y and Y’ are path connected, this is a consequence of the com-
mutativity of the diagram (for g > 1)

[S5Y] 25 (S5

N
H(S9) L]
The same kind of argument establishes the next result.

8 LEmMA Let Y be an object of G and let Y' be an arbitrary path-
connected space. A map f: Y — Y’ is a weak homotopy equivalence if and
only if [ f] € [V;Y'] = #¥'(Y) is universal for 7¥. =

We are heading toward a proof of the existence of universal elements for
any homotopy functor. The following two lemmas will be used in this proof.
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9 LeEmMma Let H be a homotopy functor, Y an object in G, and u € H(Y ).
There exist an object Y' in Cy, obtained from Y by attaching 1-cells, and a
l-universal element v’ € H(Y') such that ' | Y = u.

PROOF For each A € H(S?) let S,! be a 1-sphere and define Y’ = Yv V, S,\1.
Then Y’ is an object of ¢ obtained from Y by attaching 1-cells. If g, is the
composite S! = S, C Y/, it follows from condition (b) on page 407 that there
is an element v’ € H(Y') such that ' | Y = w and H(g,)u’ = A for A € H(SY).
Since Ty ([g\]) = A, Ty ([S1;Y']) = H(S'), and ' is l-universal. =

10 temma  Let H be a homotopy functor and u € H(Y) an n-universal
element for H, with n > 1. There exist an object Y’ in Cy, obtained from Y by
attaching (n + 1)-cells, and an (n + 1)-universal element v’ € H(Y') such
that v' | Y = u.

prooF For each A € H(§""1)let S,»"1 be an (n + 1)-sphere, and for each map
a: S* — Y such that H(a)u = 0 attach an (n 4 1)-cell ¢,»"1 to Y by a. Let YV’
be the space obtained from Y v V, §,7*1 by attaching the (n + 1)-cells {¢,*1}.
Then Y’ is an object of ¢y obtained from Y by attaching (n + 1)-cells.
If g,: Sn*1 — Yv V, §,v*1 s the composite S71 = §,71 C Yv V, §»*1 it
follows from condition (b) on page 407 that there is an element
i € HY v V, S,»*1) such that @ | Y = w and H(g,)i = A for A € H(S"*1).

For each map a: 5* — Y such that H(a)u = 0 let S§,” be an n-sphere
and let fo: V,S,» — Yv V, §,»*1 be the constant map and let fi: V, S,» —
Yv V, S,7*1 be the map such that S,” is mapped by a. Then

i YV V81 C Y

is a map such that [j] is an equalizer of [ fo] and [ f1]. Since H(fo)i = 0 =
H( f1)u, by condition (a) on page 407 there is an element &’ € H(Y’) such that
H(j)u" = 4. Then v’ | Y = u and to complete the proof we need only show
that v’ is (n + 1)-universal.

There is a commutative diagram

Ta1(Y,Y) S m(Y) 5 m(Y) = 7 (YY)

A /n

H(S9)

with the top row exact. Since Y’ is obtained from Y by attaching (n + 1)-cells,
it follows from lemma 7.6.15 that 74(Y’,Y) = 0 for g < n. Therefore iy is an
isomorphism for ¢ < n and an epimorphism for ¢ = n. Since u is n-universal,
T, is an isomorphism for ¢ < n and an epimorphism for ¢ = n. It follows
that T, is also an isomorphism for ¢ < n and an epimorphism for g = n.
Furthermore, if a € [S*;Y] is in the kernel of T,, then a is represented by a
map a: S* — Y and

a = [a] € 3(mmsr(en,6,m7Y)) C 3(mnsr(Y,Y)) = ker iy
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Therefore, for g = n, ker T, = ker iy, and so T, is an isomorphism from
mo(Y') to H(S?). For any A € H(S"1) the map j° g: S**1 —> Y’ has the
property that

Tu([j°gl) = Hig)a = A

showing that T, is an epimorphism for ¢ = n + 1, and so u’ is (n + 1)-
universal. =

Il TtHEOREM Let H be a homotopy functor, let Y be an object in Cy, and
let u € H(Y). Then there are a classifying space Y' for H containing Y such
that (Y',Y ) is a relative CW complex and a universal element v € H(Y') such
that u' | Y = wu.

PROOF  Using lemmas 9 and 10, we construct, by induction on n, a sequence
of objects {Y,}n.0 in & and elements u, € H(Y,) such that

(@) Yo = Yand up = wu.

(b) Yn,1 is obtained from Y, by attaching (n + 1)-cells, where n > 0.
(€) tni1| Yn = up.

(d) unis n-universal for n > 1.

It follows from (b) above that Y/ = U Y, topologized with the topology
coherent with {Y,} is a path-connected pointed space containing Y such that
(YY) is a relative CW complex. By lemma 2, the homotopy class
[{jn}]: V Yn — Y'is an equalizer of the homotopy classes [V i,]: V Y, — V Y,
and [V 1,]: V Y, — V Y,. By condition (b) on page 407 there is an element
@ € H(\V Y,) such that @ | Y, = uy. It follows from (c) above that H(V i,)i =
H(V 1,)u, and by condition (a) on page 407 there is an element v’ € H(Y")
such that H({j,})' = @ (thatis, u’| Y, = u, for n > 0). Then v’ | Y = u, and
it remains to show that 4’ is universal.

By the definition of Y’ and «’, there is a commutative diagram for ¢ > 1

lim, {7y(Ys)} = 7y(Y")
TN ST
H(S9)

Since u, is n-universal, T, is an isomorphism for n > g, and so the left-hand
map is an isomorphism. Therefore T, is also an isomorphism, and u’ is
universal. =

12 coroLLaRy For any homotopy functor there exist classifying spaces
which are CW complexes.

PROOF Apply theorem 11 to a one-point space Y, with u the unique element
of HY). =

13 cororrary Let u € H(Y) be a universal element for a homotopy
functor H. Let (X,A) be a relative CW complex, where A and X are objects
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in . Given amap g: A — Y and an element v € H(X) such that v | A = H(g)u,
there exists a map g': X — Y such that g = g’ | A and v = H(g')u.

PrROOF Let i: X € Xv Y and i: Y C Xv Y and let j: XvY— Z be a map
such that [j] is an equalizer of [i ° f] (where f: A C X) and [i’ ° g]. By condi-
tion (b) on page 407, there is an element & € H(X v Y) such that 6 | X = v
and ©|Y = u. Since H(f)v = H(g)u, it follows that H(i° f)o = H(i’ ° g)o,
and by condition (a) on page 407, there is an element & ¢ H(Z) such that
H(j)a = ©. We now apply theorem 11 to @ to obtain a Y’ containing Z and a
universal element v’ € H(Y’) such that @ = v’ |Z. Let : Y — Y’ be the
composite

I . h
YCXvYLZCY

Then H(j')u’ = u, and by theorem 7, j’ is a weak homotopy equivalence.
Since the composite

f i J h
ACXCXvYSZCY
is homotopic to j' ° g, it follows from the fact that fis a cofibration that there
is a map g X — Y’ such that 3| A = { ° g and g is homotopic to h °j°i.
Since j” is a weak homotopy equivalence, by theorem 7.6.22, there is a map
g+ X— Ysuchthat g |A = gandj ° g’ ~ g Then

H(ghw = H(gHH(j)u' = Hi)H{j)Hh)v' =5|X = v
showing that g’ has the requisite properties. =

14 teEOREM If Y is a classifying space and u € H(Y) is a universal
element for a homotopy functor H, then for any CW complex X in G, T, is a
natural equivalence of w¥(X) with H(X).

PROOF Given v € H(X), apply corollary 13, with A = xp and g the constant
map, to obtain a map g': X — Y such that H(g')u = v. Then T,[g'] = v,
proving that T, is surjective.

If g9, g1: X — Y are maps such that T,[go] = T,[gi1], let X’ be the CW
complex X X I/xo X I, with (X")a = [(Xe x [) U (X071 x I)]/(xo X I) for
q > 0. Let v € H(X’) be defined by v = H(h)H(go)u, where h: X’ — X is the
map h([x,t]) = x. Let A = X X I/xo X I andlet g: A — Y be the map such
that g([x,0]) = go(x) and g([x,1]) = gi(x). Then H(g)u = v | A, and by corol-
lary 13, there is a map g": X’ — Y such that g'| A = g. Then the composite

XXI—>XXI/xox15Y
is a homotopy relative to xo from g to g1, showing that T, is injective. ®

15 cororLary If Y and Y’ are classifying spaces which are CW complexes
andu € H(Y)and v’ € H(Y’') are universal elements for a homotopy functor H,
there is a homotopy equivalence h: Y — Y, unique up to homotopy, such
that Hhyu' = u.
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PROOF By theorem 14, there exists a unique homotopy class [g]: ¥ — Y’
such that H(g)u’ = u. By theorem 7, g is a weak homotopy equivalence. By
corollary 7.6.24, g is a homotopy equivalence. =

8 WEAK HOMOTOPY TYPE

In this section we shall show that any space can be approximated by CW
complexes. This leads to an equivalence relation based on weak homotopy
equivalence which is weaker than homotopy equivalence. We shall also con-
sider the same equivalence relation in the category of maps. This will be used
in defining and analyzing the general relative-lifting problem.

A relative CW approximation to a pair (X,A) consists of a relative CW
complex (Y,A) and a weak homotopy equivalence f: ¥ — X such that fla) = a
for all a € A. A CW approximation to a space X is a relative CW approxima-
tion to (X, @).

1 THEOREM Any pair has relative CW approximations, and two relative
CW approximations to the same pair have the same homotopy type.

PrRoOF First we consider the case where X is path connected. Let xy € X
and let {A;};.s be the set of path components of A, and for each j € J choose
a point a; € A;. There is a relative CW complex (A",A) with (A", A)° = A U e,
where €0 is a single point and

A= (A AL = (ALA)0 U jUJ et

€

where ¢;1 is a 1-cell such that ¢! = €0 U g; forj € J. Let g: A” — X be a map
such that g(a) = a for a € A, g(e®) = xo, and g| ;! is a path in X with end
points xo and g; for each j € J. Then A’ is a path-connected space with non-
degenerate base point ¢° and [g] € #X(A’). It follows from theorem 7.7.11
that there is a relative CW complex (Y,A’) [which can be chosen such that
(YAl = A’v V S,1] and a universal element [g'] € 7X(Y) for #¥ such that
g |A" ~ g. Since A’ C Y is a cofibration, there is a map f: ¥ — X such that
[f] € 7X(Y) is universal for =% and f | A’ = g. By lemma 7.7.8, f is a weak
homotopy equivalence. Since (Y,A) is a relative CW complex [with (Y,A)° =
(A’,A)0 and (Y,A)? = (Y,A") for g > 1] and since f(a) = a for a € A, (Y,A)
and f constitute a relative CW approximation to (X,A).

Next we consider the case where X is not path connected and we let
{X.} be the set of path components of X. By the case already considered, for
each a there is a relative CW approximation f,: (Y,, X, N A) = (X,, X, N A).
Let Y be the space obtained from the disjoint union A U U Y, by identifying
xr€X,NACY, with x € A for each « and let k: A U U Y, — Y be the
collapsing map. Then k| A: A — Y is an imbedding and (Y,A) is a relative
CW complex with (Y,A)? = k(A U U (Y,, X, N A)9) for all ¢ > 0. There is a
map f: Y — X such that fk(a) = a for a € A and f° (k| Y,) = f, for all a.
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Since {k(Y,)} is the set of path components of Y and f induces a weak
homotopy equivalence of each of these with the corresponding path compo-
nent X, of X, f is a weak homotopy equivalence from Y to X. Identifying A
with k(A), we see that (Y,A) and f constitute a CW approximation to (X,A).

Given two relative CW approximations to (X,A), say f1: (Y1,A) - (X,A)
and f2: (Y2,A) — (X,A), it follows from theorem 7.6.22 that there are maps
g1: (Yl, ) <Y2,A) and ga2: (YQ, ) (Yl,A> such that fg ° g1 :fl and
f1 ° g2 = f2, both homotopies relative to A. Then f ° (g1 ° g2) =~ fo ° 1 rel A,
and by theorem 7.6.22 again, g1 ° go =~ 1 rel A. Similarly, g, ° g1 = 1 rel A,
and so (Y1,A) and (Y3,A) have the same homotopy type. = ‘

Two spaces X; and X will be said to have the same weak homotopy type
if there exists a space Y and weak homotopy equivalences f1: ¥ — X; and
f2: Y — Xs. By replacing such a space Y with a CW approximation to it, we
see that X; and X, have the same weak homotopy type if and only if they
have CW approximations by the same CW complex.

2 vremMma The relation of having the same weak homotopy type is an
equivalence relation.

PROOF The relation is reflexive and symmetric by its definition. To prove it
transitive, let X;, X2, and X3 be spaces and let Yy and Y, be CW complexes
such that there exist weak homotopy equivalences

Y, Yo

VARNR VA1
X, X X5

Then fo: Y1 — Xz and gz: Y — X; are both CW approximations to Xz, and
by theorem 1, there is a homotopy equivalence h: Y; — Y, such that
fo ~ g2 ° h. Then g3 ° h: Y1 — X3, being the composite of weak homotopy
equivalences, is a weak homotopy equivalence. Therefore X; and X3 have the
same weak homotopy type. =

We are interested in applying these ideas to weak fibrations. The main
result is that any two fibers of a weak fibration with path-connected base
space have the same weak homotopy type.

3 LEmMMA Let p: E — B be a weak fibration with contractible base space B.
For any bo € B the inclusion map i: p~1(by) C E is a weak homotopy
equivalence.

PROOF Let F = p~1(bg). Since B is contractible, m(B,by) = 0 for g > 0.
From the exactness of the homotopy sequence of p, it follows that for any
e € F, i induces an isomorphism iy 7mo(F,e) = mo(E,e) for ¢ > 1 and
i#<'ﬂ'0(F,6>) = '770(E,6).

It only remains to verify that iy maps mo(F,e) injectively into mo(E,e).
Assume that e, ¢’ € F are such that there is a path w in E from e to €'
Since B is simply connected and p ° w is a closed path in B at b, there is a map
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H: 1 x I — B such that H(t,0) = pw(t) and H(0,t') = H(1,t') = H(t,1) = by.
Let g: I X 0 U I X I — E be the map defined by g(t,0) = w(t), g(0,t') = e,
and g(1,t') = ¢’. By lemma 7.2.5, there is a map G: I X [ — E such that
p°G=Hand G|I x0UIXI=g Let w: I — E be the path defined by
@'(f) = G(1,t). Then ' is a path in F from e to ¢ [because pw'(t) = bo],
showing that iy: mo(F.e) — mo(E,e) is injective. =

4 CcoroLLARY Let p: E — B be a weak fibration and let w be a path in B.
Then p~1(w(0)) and p~(w(1)) have the same weak homotopy type.

prooF¥ Let p's E/ — I be the weak fibration induced from p by w: I — B.
Then p~1(w(0)) and p~i(w(l)) are homeomorphic to p'~1(0) and p’'~1(1),
respectively. By lemma 3, each of the inclusion maps p'~*(0) C E’ and
p’~1(1) C E’ is a weak homotopy equivalence. The corollary follows from this
and lemma 2. =

This result implies the following analogue of corollary 2.8.13 for weak
fibrations.

3 coroLrLaRY Ifp: E — Bis a weak fibration with path-connected base
space, any two fibers have the same weak homotopy type. =

We now consider the category whose objects are continuous maps
a: P’ — P’ between topological spaces and whose morphisms (also called
map pairs) f: a« — 8 are commutative squares

P// ﬂ) Q//

al/ \LB

Lo
In this category a homotopy pair H: fo ~ f1, where fo, fi: « — 8, is a com-
mutative square

P//XI_HL)Q//
axll, lﬂ
PxIE ¢

such that H': f§ ~ f{ and H': f{ ~ f1 (note that H is a map pair from
a X 1rto B). If such a homotopy pair exists, fo is said to be homotopic to fi.
This is an equivalence relation in the set of map pairs from a to 8, and the
corresponding equivalence classes are called homotopy classes. We use [a;8]
to denote the set of homotopy classes of map pairs from a to B, and if
f: @ — B is a map pair, its homotopy class is denoted by [ f]. It is trivial to
verify that the composites of homotopic map pairs are homotopic, so there is
a homotopy category of maps whose objects are maps a: P’ — P’ and whose
morphisms a — 8 are homotopy classes [ f], where f: & — B is a map pair.
A map pair f: « — B is called a homotopy equivalence from a to Bif [f]is
an equivalence in the homotopy category of maps. Two maps a and f§ are
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said to have the same homotopy type if they are equivalent in the homotopy
category of maps.

Given a map pair g: « — « (or a map pair h: 8 — f') there is an induced
map g#: [a;8] — [a;0] (or hy: [a;B] — [a;B]) such that g#[f] = [f ° g] (or
ha[f] = [he° f]). Since g# ° hy = h,. ° g#, the function which assigns [«;8] to
o and B and g# and hy to [g] and [h], respectively, is a functor of two
variables from the product of the homotopy category of maps by itself to the
category of sets that is contravariant in o and covariant in §.

If a: P” — P and B: Q" — Q' are maps, given a map f: P’ — Q”, there
is a map pair p(f): « — B consisting of the commutative square

j 2 foa Q//
a| ls
P; Bef Q/

[that is, (po(f)) = f° a and (p(f)) = B ° f]. Given a map pair f: « — S, a
lifting of f is a map f: P’ — Q" such that p( f) = f. Two liftings fo, fi: P — Q"
of f: « — B are homotopic relative to f if there is a homotopy H: P’ X I — Q"'
from f; to fi such that H ° (a X 1;) and B ° H are both constant homotopies
[that is, p(H) is the constant homotopy pair from f to f]. Such a map H is
called a homotopy relative to f, and we write H: fo ~ fi rel f. Homotopy
relative to f is an equivalence relation in the set of liftings of f, and the set of
equivalence classes is denoted by [P';Q"];. The relative-lifting problem is the
study of [P';Q"]; (for example, do liftings of f exist, and if so, how many
homotopy classes relative to f of liftings of f are there?).

6 ExampLE If P is empty, then a map pair f: @ — B consists of a map

f’: P — @, and a lifting f: P — Q" of fis a lifting of f' to Q” in the sense
defined in Sec. 2.2. In this case, if 8 is a fibration, two liftings fo, fi: P — Q"
of f’ are homotopic relative to f if and only if they are fiber homotopic in the
sense of Sec. 2.8. Thus the absolute-lifting problem is a special case of a
relative-lifting problem.

7 ExampLE If « is an inclusion map and @’ is a one-point space, then a
map pair f: « — B corresponds bijectively to a map f”: P” — Q" and a
lifting f: P’ — Q" of f corresponds bijectively to an extension of f”' to P’. In
this case two extensions fo, fi: P — Q' are homotopic relative to f (as liftings)
if and only if they are homotopic relative to P”. Thus the extension problem
is a special case of a relative-lifting problem.

8 EexampLE Let f, fi: P — Q' be liftings of a map pair f: « — . Let
R’ = P’ X I and let R” be the quotient space of the disjoint union of P’ X I
and P” X I by the identifications (2/,0) € P’ X I equals (a(z"),0) € P’ X Iand
(z'’,1) € P’ X Iequals («(z""),1). Define a map y: R” — R’ by y(z",f) = (a(z"),!)
for (z,t) € P” x I and y(z',t) = (7,t) for (z',t) € P’ X I. There is a map pair
g: Y — B consisting of the maps g R” — Q" and g’: R" — Q' such that
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g'(z".t) = f"(&") for (z",t) € P" X I, g'(%,0) = fo(2) and g"(z',1) = f1(') for
7 € P,and g'(z,t) = f'(z') for (z/,t) € P" X I. Then fo and f; are homotopic
relative to f if and only if there exists a lifting of g.

We are particularly interested in the relative-lifting problem in case « is
the inclusion map of a relative CW complex and B is a weak fibration. Thus,
if i A C X is an inclusion map and p: E — B is a weak fibration, a map pair
fii— p consists of a map f: X — B and a lifting f”: A — E of ' 1A.
A lifting f of fis a lifting of f’ to E, which is an extension of . Two liftings
of f are homotopic relative to f if and only if there is a fiber homotopy rela-
tive to A between them. The following relative homotopy extension theorem
is the main reason for giving particular attention to this case.

9 tuEOREM Let (X,A) be a relative CW complex, with inclusion map
it A C X, and let p: E — B be a weak fibration. Given a map f: X — E and
a homotopy pair H:i X 1;— p consisting of a homotopy H: X x I — B
starting at p ° f and a homotopy H': A X I — E starting at f © i, there is a
homotopy H: X X I — E starting at f such that H = p° H and
H' = H- (‘L X 11).

PROOF Let g: X X 0 U A X I — E be the map defined by g(x,0) = f(x) for
x € X and g(a,t) = H"(a,t) for a € A and t € I. Then H' is an extension of
p ° g and by the standard stepwise-extension procedure over the successive
skeleta of (X,A) (applied to polyhedral pairs in the proof of theorem 7.2.6 and
equally applicable to any relative CW complex), there is a map H: X X [ — E
such that p e H = H and H|X X 0 U A X I = g. Then H has the desired
properties. ®

Let us reinterpret this last result. A map pair f: i — p is a commutative
square

Therefore, if we let BX X’ E4 denote the fibered product of the map BX — B4
induced by restriction and the map E4 — B4 induced by p, the pair (f',f")
is a point of BY X’ E4. In this way the set of map pairs f: i — p is identified
with the fibered product BX¥ X’ EA. The map p corresponds to a map
p: EX — BY X’ E4, and [X;E]; is the set of path components of p~1( f).

10 coroLLARY Let (X,A) be a relative CW complex with X locally com-
pact Hausdorff, with inclusion map i: A C X, and let p: E — B be a weak
fibration. Then p: EX — BX X’ E4 is a weak fibration.

PROOF Given a map g: I" — EX and a homotopy H: I" X [ — BY X’ E4
starting with p(g), the exponential correspondence assigns to g a map
g: X X I — E and to H a homotopy pair Hy from (i X 1;7) X 1; to p, start-
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ing with p(g). By theorem 9, there is a homotopy Hy: X X I X I - E
starting with g such that p(H;) = Hj. Then the exponential correspondence
associates to Hy a map G: I" X I — FEXstarting with gsuchthatp e G = H. =

It follows from corollaries 10 and 4 that if fo, f1: i — p are homotopic
map pairs with X locally compact Hausdorff, then [X;E];, and [X;E];, are in
one-to-one correspondence. Thus the relative-lifting problem for f; is equiva-
lent to the relative-lifting problem for f;.

Given weak fibrations py: Ey — By and po: E; — By, a map pair
g: p1— pz is called a weak homotopy equivalence if g’: Ey — E5 and
g': By — By are weak homotopy equivalences. We shall show that a weak
homotopy equivalence in the category of maps has much the same properties as
a weak homotopy equivalence in the category of spaces. The following ana-
logue of theorem 7.6.22 is our starting point.

11 remma Let (X,A) be a relative CW complex, with inclusion map
i A C X, and let g: p1 — p2 be a weak homotopy equivalence between weak
fibrations. Given a map pair f: i — p; and a lifting h: X — E, _of the map
pair g © f, there is a lifting f: X — E; of f such that g’ ° fand h are homo-
topic relative to g ° f.

PROOF The proof involves two applications of theorem 7.6.22 and then two
applications of theorem 9. We shall not make specific reference to these
when they are invoked.

We have a commutative diagram

AL E £S5 E,

il pll lpz
x % B & B,

in which g”” and g’ are weak homotopy equivalences, and we are given a map
h: X — Ez such that h°i=g’° f” and pz ° h = g ° f’. Then there is a
map f: X — E; such that f © i = f”" and a homotopy G”: g" ° f~hrel A.
The maps p; ° f and f agree on A and pz °© G” is a homotopy relative to A
fromg e py°f = > ftog ° f’ = pz ° h. Therefore there is a homotopy
F: py °f:f’relA andahomotopyH’ geF ~py°G'rel A XITUXX I.

Let F”: X X I — E; be a lifting of F’ such that F”(x,0) = f(x) for x € X
and F"(a,t) = f"(a) for a € A and t € I. Define f: X — E; by f(x) = F(x,1).
We show that f has the desired properties. It is clearly a lifting of f.

The maps g” ° F" and G” are homotopies relative to A from g” ° f to
g © f and to h, respectively, and H' is a homotopy from ps ° g” > F' topz > G”
rel A x I U X x I. Since there is a homeomorphismof (X X I X LA X I X I)
onto itself taking X X (I X I U 0 X I) onto X X I X 0, there is a lifting H”
of H which is a homotopy from g” ° F’ to G” rel X X 0 U A X I. Then
the map H: X X I — E, defined by H(x,t) = H”(x,1,t) is a homotopy from
g’ ftohrelativetog°f. ®

This gives us the following important result.
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12 tarorem Let (X,A) be a relative CW complex, with inclusion map
i: A C X, and let g: p1 — p2 be a weak homotopy equivalence between weak
fibrations. Given a map pair f: i — p1, the map pair g induces a bijection

gi: [KEL]r = [X;Eglger

proOF The fact that gi is surjective follows immediately from lemma 11.
The fact that g7 is injective follows from application of lemma 11 to the rela-
tive CW complex (X,A) X (L[). =

EXERCISES

A EXACTNESS OF HOMOTOPY SETS
1  Assume that j: (X’,A’) C (X,A) is a cofibration, where A and X’ are closed subsets of
Xand A’ = A N X'. Prove that the collapsing map

(CinCir) = (Cy.Cp)/CX = (XA)/ X = (X/X, A/A")

is 2 homotopy equivalence.
2 With the same hypotheses as in exercise 1, let g": (X,A) — C(X’,A’) be any map such
that g’'(x') = «’ for x’ € X" and let g: (X/X",A/A’) — S(X’,A’) be the map such that the
following square is commutative, where k' and k"’ are the collapsing maps:

xA) & oxA)

el e

(X/X'A/A) £ S(X',A")
Prove that there is a coexact sequence
(X'A) = - — SYX,AY) s Sn(X,A) Z5s Sn(X/X, A/AT) B85

3 If (X,A) is a relative CW complex, prove that there is a coexact sequence

ACX—>X/A—-SACSX— .- >8"AC "X — ...

B HOMOTOPY GROUPS
1 If A is a retract of X, prove that there is an isomorphism

a(Xox0) = (A x0) @ ma(X,A %0) n>2

2 If X is deformable into A relative to xy € A, prove that there is an isomorphism
Ta(A,x0) = Ta(Xox0) @ Tpp1(X,A%0) n>2

3 If p: E — B is a weak fibration such that the fiber F = p~1(b) is contractible in E
relative to eq € F, prove that there is an isomorphism

7u(B,bo) = mn(E,e0) @ 7n_1(F,e0) n> 2
4 Ifp: E — Bis a weak fibration which admits a section, prove that there is an iso-
morphism for eg € F = p~Y(bo)

n(E,e0) = ma(B,bo) @ m,(Fe0) n>2
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3 Let {X;} be an indexed family of spaces with base points x; € X;. Prove that there is
an isomorphism
Ta(X Xj(x3)) = X mn(Xjx))  n >0
6 Given XvY =X X yoUx XY C X XY, prove that there is an isomorphism
(X V Y, (x0,40)) = mu(X,20) @ (Y, o) @ mi1(X X Y, XV Y, (x0,Y0))

€ BASE POINTS!
1 Give an example of a degenerate base point.

2 If X and Y have nondegenerate base points, prove that also Xv Y, X X Y, and
X X Y/Xv Y have nondegenerate base points.

3 If (X,x) and (Y,yo) have the same homotopy type, prove that x; is a nondegenerate
base point of X if and only if yo is a nondegenerate base point of Y.

4 Prove that any space has the same homotopy type as some space with a nondegen-
erate base point.

3 Let X and Y be path-connected spaces with nondegenerate base points xg and yo,
respectively. Prove that X and Y have the same homotopy type if and only if (X,xo) and
(Y,yo) have the same homotopy type.

D THE WHITEHEAD PRODUCT

Let p>1and g > 1 and let h: (Ir*a,fp+9) — (Ir,Ir) X (I9,I7) be the homeomorphism
hti, . . . tpyq) = (f1, - - - JEp)(tp+1s - - - slpig)). Then h determines an element
[h] € 7y q((IP,IP) X (I9,I9), (0,0)) and an element

Tlpg = 0[h] € Mpyqa(IP X I8 U Ir X 14, (0,0))
Given maps a: (IP,[F) - (X,x) and f: (Iof9) — (X,x), define a map
y: (IP x It U I % 19, (0,0)) — (X,x0) by
n_ [a(z) el (zz)clP X In
ves) = {B(%) zel, z7) €l x It
I Prove that vu(np,q) € Tpiq-1(X,x0) depends only on [a] and [B]. It is called the
Whitehead product of [a] and [B] and is denoted by [[a],[B]] € 7p1qe—1(X,x0).

2 Prove that if p = g = 1, then [[a][8]] = [][B][]7*[B]*

3 16p > Landq = 1, prove that [[al(8] = [alhya((el .

4 If p + g > 2, prove that [[a][8]] = (—1)9[[B.[a]].

3 If f: (X;xo) — (Y.yo), prove that ful[al,[B]] = [ felal.f=lB]].

6 If wis a path in X, prove that Ay [[a].[B8]] = [halal.hilBl]

@ Prove that [[«],[8]] = 0 if and only if there is a map f: I? X I? — X such that
o =[St e 1

8 If X is an H space, prove that [[a],[8]] = O for all [«] and [B].

1See D. Puppe, Homotopiemengen und ihre induzierten Abbildungen. I, Mathematische
Zeitschriften, vol. 69, pp. 299-344, 1958.
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® Prove that S* is an H space if and only if [[a],[8]] = 0 for all [a], [B] € 7(S™).

E CcwW COMPLEXES
1 If (X,A) is a relative CW complex, prove that X has a topology coherent with the
collection {A}u {e]|e acell of X — A}.

2 If (X,A) is a relative CW complex, prove that X is compactly generated if and only
if A is compactly generated.

3 If (X,A)is a relative CW complex and A is paracompact, prove that X is paracompact.

4 If (X,A) is a relative CW complex and A has the same homotopy type as a CW com-
plex, prove that X has the same homotopy type as a CW complex.

3 Prove that a CW complex is locally contractible.
6 Prove that a CW complex has the same homotopy type as a polyhedron.

F ACTION OF THE FUNDAMENTAL GROUP
1 Prove that the real projective n-space P* is simple if and only if n is odd.

2 TFor 1 <n < m show that P2n*1 x §2m+1 and P2m+1 % §2n*1 agre simple compact
polyhedra having isomorphic homotopy groups in all dimensions, but are not of the same
homotopy type.
3 Let (Z,Z) be an (n — 1)-connected CW pair, with n > 2, such that Z is simply con-
nected. Let (X*,X) be the adjunction space obtained by adjoining Z to a CW complex X
by a map f: (Z,z0) — (X,xo) and let g: (Z,Z,zo) — (X*,X,x0) be the canonical map. Prove
that (X*,X) is (n — 1)-connected and that the map
@ [77"<Z’Z’z0)][w] i WH(X* aX’x0>

[w] e 1 X,20)
sending [a]p.; to hy(gsle]) for [a] € m4(Z,Z,z0) is an isomorphism. [Hint: Let X be the
universal covering space of X and let { fi.;: Z — X} m a0 be the set of liftings of f.
Show that the space X * obtained by attaching a copy of Z to X for each map fi,; is the
universal covering space of X *. Then use the fact that 7,(X*,%) = 7,(X*,X) and com-
pute 7,(X*,X) by the Hurewicz theorem.]

4 Let X be the CW complex obtained from S!v S2 by attaching a 3-cell by a map
representing 2[a] — hy,[a], where [a] is a generator of 75(5?) and [w] is a generator of
71(S!). Prove that the inclusion map S§! C X induces an isomorphism of the fundamental
groups and all homology groups but not of the two-dimensional homotopy groups.

G CcW APPROXIMATIONS

1 If (X,A) is an arbitrary pair, prove that there is a CW pair (X',A’) and a map
fi (X', A’) - (X,A) such that f| X": X’ —» X and f| A": A’ — A are both weak homotopy
equivalences.

2 If fi: X4 > Y; and fo: Xo — Y, are weak homotopy equivalences, prove that
f1 X f2: X1 X X2 = Y1 X Yz is also a weak homotopy equivalence.

3 If fi: Xy — Y, and fo: Xo — Y, are weak homotopy equivalences, show by an
example that f; v f2: Xy v Xz — Y1V Y3 need not be a weak homotopy equivalence.

4 Show by an example that a weak homotopy equivalence need not induce isomor-
phisms of the corresponding Alexander cohomology groups.

8 If X is simply connected and H, (X) is finitely generated, prove that X has the same
weak homotopy type as some finite CW complex.
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6 A space X is said to be dominated by a space Y if there exist maps f: X — Y and
g: Y — X such that g ° f =~ 1x. Prove that a space is dominated by a CW complex if and
only if it has the same homotopy type as some CW complex.

H GROUPS OF HOMOTOPY CLASSES
Throughout this group of exercises it is assumed that Y is (n — 1)-connected, where
n > 2, with base point yo, and that X is a CW complex of dimension < 2n — 2.

1 Prove that any map X — Y is homotopic to a map sending X! to yo and that if
£ g (X,X»"1) — (Y,yo) are homotopic as maps from X to Y, they are homotopic relative
to Xn72.

2 Prove that the diagonal map d: X — X X X is homotopic to a map d’ such that
d'(X) C (X x X»2) U (X»2 X X). Prove that maps ', d"": X — (X X Xr"2) U (X»2 x X)
which are homotopic in X X X are homotopic in (X x X»71) U (X»~1 x X). (Hint: Use
the cellular-approximation theorem.)

Let d: X — (X x X»2) U (X2 x X) be homotopic in X X X to the diagonal
map. Given f, g: X — Y, let f', g": (X,X""1) — (Y,yo) be homotopic to f and g, respec-
tively. Then (f' X g’) > d': X — Y X Ymaps X into Yv Y. Let y: Yv Y — Y be defined
by ¥(y.y0) = y = v(yo.y).

3 Prove that [y ° (f' X g') ° d'] depends only on [f] and [g] and that the operation
[f1+gl=1[y°(f X g)-°d] is associative, commutative, and has a unit element,
making [X;Y] into a commutative semigroup with unit.

4 Prove that if g2 Y — Y, where Y’ is also (n — 1)-connected (or if h: X’ — X, where
X’ is a CW complex of dimension < 2n — 2), then gg: [X;Y] — [X;Y’] is a homomor-
phism (or h#: [X;Y ] — [X';Y] is a homomorphism).

3 The semigroup [X;Y] is a group. (Hint: Use induction on the dimension of X, the
fact that [X**1/X%;Y ] is a group for any k and any Y, because Xk*1/X¥, being a wedge
of (k + 1)-spheres, is a suspension, and the exactness of the sequence of homomorphisms

[XEF1/XEY ] — [XEFLY ] [ X5Y ] (XY ]
where X' is a disjoint union of k spheres, one for each (k + 1)-cell of X.)
In case Y = S* and dimension X < 2n — 2, the group [X;S"] is called the nth
cohomotopy group of X,! denoted by #%(X).
I MISCELLANEOUS
1 Let 9% mrpyq(A%HL,A 1 1g) — y(An* 1 (An+1)n=1 p6) if n > 2 and let

9" 772(A2,A2,1)0) — Wl(Az,Uo)

if n = 1. Prove that 9'[£,,1] = b, for n > 1 (see page 394 for definition of b,).

2 Let H be a homotopy functor and let f: X — Y be a base-point-preserving map
between path-connected spaces, with nondegenerate base points. Prove that the sequence

H(C;) — H(Y) — H(X)
is exact.
3 If H is a homotopy functor and (X,A) is a CW pair, prove that there is an exact
sequence
H(A) « H(X) — H(X/A) < H(SA) < - . < H(S'A) « ..

! For more details see E. Spanier, Borsuk’s cohomotopy groups, Annals of Mathematics, vol. 50,
pp. 203-245, 1949.



CHAPTER EIGHT
OBSTRUCTION THEORY



IN THIS CHAPTER WE DEVELOP OBSTRUCTION THEORY FOR THE GENERAL LIFTING
problem. A sequence of obstructions is defined whose vanishing is necessary
and sufficient for the existence of a lifting. The kth obstruction in the sequence
is defined if and only if all the lower obstructions are defined and vanish, in
which case the vanishing of the kth obstruction is a necessary condition for
definition of the (k + 1)st obstruction.

We begin by applying the general theory of homotopy functors to study
the set of homotopy classes of maps from a CW complex to a space with
exactly one nonzero homotopy group and we show that a suitable cohomology
functor serves to classify maps up to homotopy in this case. This result is then
used to obtain a solution, in terms of cohomology, of the lifting problem for a
fibration whose fiber has exactly one nonzero homotopy group.

With this in mind, we then consider the problem of factorizing an arbi-
trary fibration into simpler ones each of which has a fiber with exactly one
nonzero homotopy group. We show that such factorizations do exist for a
large class of fibrations, and that when they exist, a sequence of obstructions
can be associated to the factorization. These obstructions are subsets of coho-

423
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mology groups, and we apply the general machinery to some special cases
where, because of dimension restrictions, the only obstructions which enter
are either the first one or the first two. For the case of only one obstruction
we obtain the Hopf classification theorem.

Finally, we prove the suspension theorem, which we use to compute the
(n + 1)st homotopy group of the n-sphere. Combining this with the technique
of obstruction theory, we obtain a proof of the Steenrod classification theorem.

Section 8.1 is devoted to spaces with exactly one nonzero homotopy
group. We prove that a suitable cohomology functor serves both to classify
maps from a CW complex to such a space and to provide a solution for the
extension problem for maps involving a relative CW complex and such a space.
We use this result to derive the Hopf extension and classification theorems for
maps of an n-dimensional CW complex to S*. Section 8.2 deals with fibrations
whose fiber has exactly one nonzero homotopy group, and again it is shown
that a suitable cohomology functor serves to provide a solution for the lifting
problem and to classify liftings of a given map.

In Sec. 8.3 we prove that many fibrations can be factored as infinite
composites of fibrations each of which has a fiber with exactly one nonzero
homotopy group. The corresponding lifting problem is then represented as an
infinite sequence of simpler lifting problems. In Sec. 8.4 we show how to
define obstructions inductively for such a sequence of fibrations, and how to
apply the resulting machinery.

In Sec. 8.5 we shall study the suspension map and prove the exactness
of the Wang sequence of a fibration with base space a sphere. This result is
used to prove the suspension theorem, which is applied to compute 7,,1(5%)
for all n. We then prove the Steenrod classification theorem for maps of an
(n + 1)-dimensional CW complex to Sn.

l EILENBERG-MACLANE SPACES

This section is devoted to a study of spaces with exactly one nonzero homotopy
group. Such spaces are classifying spaces for the cohomology functors, and
because of this, there is an important relation between the cohomology of
these spaces and cohomology operations. At the end of the section we shall
apply the results to derive the Hopf classification and extension theorems.
Then, later in the chapter, we shall study arbitrary spaces by representing
them as iterated fibrations whose fibers are spaces with exactly one nonzero
homotopy group. Thus, these homotopically simple spaces serve as building
blocks for more complicated spaces.

Let 7 be a group and let n be an integer > 1. A space of type (m,n) is a
path-connected pointed space Y such that 7,(Y,yo) =0 for ¢ # n and
7a(Y,Yyo) is isomorphic to 7. An Eilenberg-MacLane space! is a path-connected
pointed space all of whose homotopy groups vanish, except possibly for a

1 See S. Eilenberg and S. MacLane, On the groups H(m,n), I, Annals of Mathematics, vol. 58,
pp. 55-106, 1953.
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single dimension. Thus a space of type (7,n) is an Eilenberg-MacLane space.
Conversely, if Y is an Eilenberg-MacLane space and 7,(Y,yo) = 0 for g 7 n,
then Y is a space of type (m,(Y,yo), n). Let us consider a few examples.

1 It follows from corollary 7.2.12 that S! is a space of type (Z,1).

2 Let P~ be the CW complex which is the union of the sequence
Pt C P2 C ... topologized by the topology coherent with the collection
{P}j51. Then 7y(P°) = lim_, {74(P)}, and it follows from application of corol-
lary 7.2.11 to the covering S* — P» that P~ is a space of type (Z,,1).

3 Let P.(C) be the CW complex which is the union of the sequence
P{(C) C Py(C) C - .- topologized by the topology coherent with the collec-
tion {P;(C)};»1. Then wy(P.(C)) = Hlm_ {7y (P,(C))}, and it follows from
corollary 7.2.13 that P_(C) is a space of type (Z,2).

Let 7 be an abelian group and Y a path-connected pointed space.
An element v € H"(Y,yo; 7) is said to be n-characteristic for Y if the composite

Ta(Yoyo) 5> Ha(Y,yo) 2% o

is an isomorphism (where ¢ is the Hurewicz homomorphism and h is the
homomorphism defined in Sec. 5.5). If Y is (n — 1)-connected, it follows from
the absolute Hurewicz isomorphism theorem and the universal-coeflicient
theorem for cohomology that there is an n-characteristic element
v € H*(Y,yo; m) if and only if 7 = 7,(Y,yo). Such an element is unique up to
automorphisms of #. In particular, a space Y of type (m,n) with = abelian has
n-characteristic elements v € HYY,yo; 7).

4 LEMMA Let u € HYY,yo; G) be a universal element for the nth coho-
mology functor with coefficients G, where n > 1. Then Y is a space of type
(G,n) and u is n-characteristic for Y.

PROOF By theorem 7.7.14, there are isomorphisms
Ty mo(Y,yo) = H™S%,po; G) g>1

Therefore 7(Y,yo) =0 if g+ n, and Ty 7,(Y,yo) = HYS%po; G). If
a: (SM,po) — (Y,yo), then Ty([a]) = a*(u), and there is a commutative diagram

Ta(8",po) 2> Ha(S",po)
\ Ala*(u)) = KT fa])

) ) G
¢ 7 hiuy
Ta(Y.y0) = Hu(Y,yo)
Let v: HYS",po; G) = G be the isomorphism defined by
v(v) = h(v)(glls"]) v € H(S%po; )

From the commutativity of the diagram above,

(h(u) ° @)la] = (h(w) ° @ ° ay)[ls"] = K(Tu[a]) (p[15"]) = (v ° Tu)la]
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It follows that h(u) ° ¢ equals the composite
ma(Y,j0) = HY (S po; G) 2 G

and so is an isomorphism. Therefore Y is a space of type (G,n) and u is
n-characteristic for Y. =

5 coroLLARY Given n > 1 and a group « (abelian if n > 1), there exists
a space of type (m,n).

prooF If 7 is abelian, it follows from lemma 4 that any classifying space for
the nth cohomology functor with coefficients 7 is a space of type (7,n).
If n = 1 and 7 is arbitrary, it is easy to see that a classifying space for the
homotopy functor of example 7.7.5 which assigns to a pointed path-connected
space X the set of homomorphisms 71(X,xo) — 7 is a space of type (7,1). In
either case, since any homotopy functor has a classifying space by corollary
7.7.12, the result follows. =

6  coroLLARY Let {m,}n,1 be a sequence of groups which are abelian for
n > 2. There is a space X, with base point xo, such that 7,(X,xq) =< 7y
forn > 1.

PROOF By corollary 5, for each n > 1 there is a space Y,, with base point y,,
such that 7,(Yy,y,) = 0 for g % n and 7,(Y,,yn) = 7. Then the product
space X Y, with base point (y,) has the desired properties. =

The last result can be strengthened so that if 7y acts as a group of oper-
ators on 7, for every n > 2, then the sequence is realized as the sequence of
homotopy groups of a space X in such a way that the action of =; on 7, cor-
responds to the action of 71(X,xo) on 7,(X,x0) of theorem 7.3.8.

7 1eEmMA Let F: H— H’ be a natural transformation between homotopy
functors which induces an isomorphism of their qth coefficient groups for
q < n and a surjection of their nth coefficient groups (where 1 < n < o0). For
any path-connected pointed CW complex W the map

F(W): HW) — H(W)
is a bijection if dim W < n — 1 and a surjection if dim W < n.
ProOF Let u € H(Y) and «' € H'(Y’) be universal elements for H and H’,

respectively, and let f: Y — Y’ be a map such that H'( f)(v') = F(Y )(u). For
any CW complex W there is a commutative square

[WiY] L (Wi

n.| I

HW) 27 g(w)
in which, by theorem 7.7.14, both vertical maps are bijections. Since
F(S89): H(S7) — H'(S9) is an isomorphism for ¢ < n and a surjection for ¢ = n,

it follows that fy: 7o(Y) — 74(Y’) is an isomorphism for ¢ < n and a surjec-
tion for ¢ = n. Since Y and Y’ are path-connected pointed spaces, the map f
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is an n-equivalence. The result follows from corollary 7.6.23 and the commu-
tativity of the above square. =

We use this last result to obtain the following classification theorem,
which is a converse of lemma 4.

8 TtHEOREM Let 7 be an abelian group, Y a space of type (mn), and
v € HYY,yo; 7) an n-characteristic element for Y. Let ¢: #¥ — H"(+ ;7) be the
natural transformation defined by Y[ f] = f*i for [f] € [X;Y]. Then Y isa
natural equivalence on the category of path-connected pointed CW complexes.

prROOF By lemma 7, it suffices to verify that ¢ induces an isomorphism of all
coeflicient groups of the two homotopy functors #¥ and H"( - ;7). The only
nonzero coeflicient groups are 7,(Y,yo) and H*(S*,po; ), and we need only

verify that
Y(SM): (Y, yo) — HM(S™po; )

is an isomorphism. If v: H*(S",po; 7) = 7 is defined by »(v) = h(v)(¢[1s"]) (as
in the proof of lemma 4), then » ° {(S*) = h(:) ° ¢. Because ¢ is n-characteristic
for Y, v © {(S") is an isomorphism, and thus so is Y(S*). =

9 THEOREM Let Y be a space of type (m,1) and let H be the functor which
assigns to a pointed spuce X the set of homomorphisms from m(X,x) to
m1(Y,yo). Let Y: m¥ — H be the natural transformation defined by Y[ f] = fu
for [f1 € [X;Y]. Then ¢ is a natural equivalence on the category of path-
connected pointed CW complexes.

PROOF By lemma 7, it suffices to verify that

Y($1): m1(Y.yo) — H(S,po)
is an isomorphism. Let 7: H(S',po) = m1(Y,yo) be the isomorphism defined by
7(y) = y([1s:]) for vy: m1(SL,po) — 71(Y,yo). Then 7 is an inverse of (SY),
showing that (S?) is an isomorphism. =

Note that if 71(Y,y¢) is abelian in theorem 9, the set of homomorphisms
from 71(X,x0) to m1(Y,yo) is in one-to-one correspondence with the group

Hom (71(X,x0), m1(Y,y0)) = Hom (H1(X,x0), m1(Y,y0)) = H'(X,x0; m1(Y,y0))

and so theorems 8 and 9 agree in this case.

We now consider the free homotopy classes of maps from X to Y. Since
any O-cell xg of a CW complex X is a nondegenerate base point (because, by
theorem 7.6.12, the inclusion map xy C X is a cofibration), it follows from
corollary 7.3.4 that there is an action of m1(Y,yo) on the set [X,xo; Y,yol.
Furthermore, if Y and X are path connected and this action is trivial, then
the map from base-point-preserving homotopy classes to free homotopy classes

[X,X(); Y,yo] -—> [X,Y]

is a bijection. In case Y is a space of type (7,n), with n > 1, then 71(Y,yo) = 0,
and so there is a bijection
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[X,x0; Y.yol = [X;Y]

In case Y is a space of type (,1), the action of 71(Y,yo) on [X,xo; Y,yo] corre-
sponds under the bijection ¢ of theorem 9 to the action of 71(Y,yo) on H(X,xo)
by conjugation. Thus, if 7 is abelian, there is a bijection

[X,xo; Yoyo] = [X;Y]

10 taroREM If 7 is an abelian group, Y is a space of type (m.n), and
v € HYY,yo; m) is n-characteristic for Y, then for any relative CW complex
(X,A) the map

Y [XA; Y,yo]l > HY(XA; 7)

is a bijection.
PROOF In case A is empty and X is path connected, it follows from theorem 8
and the observation above that there is a commutative square

[X.x0; Yopo] = [X5Y]

v = ¥

HYXxo; m) — H"(X;m)
and so ¢: [X;Y] =~ H¥X,m). In case A is empty and X is not path connected,
let {X,} be the set of path components of X. The result follows from the first
case on observing that [X;Y] = X [X\;Y] and H"X;7) = X H"(Xy;7). In
case A is not empty, let k: (X,A) — (X/A,xo) be the collapsing map. Then the

result follows from the already established bijection y: [X/A;Y] =~ HYX/A;n)
and the commutative diagram

[XA; Yyo] £ [X/Ax0; Yol = [X/A;Y]
v 2 =¥
H"(X,A; m) & HYX/Axo; m) = HY(X/As7) w

11 tHEOREM Let Y be a space of type (m,1). For any path-connected CW
complex X the set of free homotopy classes of maps from X to Y is in
one-to-one correspondence with the set of conjugacy classes of homomorphisms
m1(X,x0) = 71(Y,yo) under the map [f] — fu.

prooF This follows from theorem 9 and the remark above covering the
action of 71(Y,yo) on [X,xo; Y,yo]. ®

12 taEOREM Let Y be a space of type (mn), with n > 1 and = abelian,
and let « € HW(Y,yo; m) be n-characteristic for Y. If (X,A) is a relative
CW complex, a map f: A— Y can be extended over X if and only if
8f* (1) = 0in H*" X, A;m)

PROOF Assume f = ge° i, where i: A C X and g2 X — Y. Then §f*(1) =
di*g¥* (1) = 0, because 6i* = 0. Hence, if f can be extended over X, then
0f*(1) = 0.
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Conversely, assume 8f* (1) = 0. To extend f over X we need only extend
f over each path component of X, and therefore there is no loss of generality
in assuming X to be path connected (and A to be nonempty). Let Y’ be the
space obtained from the disjoint union X U Y by identifying a € A with
fla) € Yforalla € A. Then Y is imbedded in Y’, the pair (Y,Y) is a relative
CW complex, and there is a cellular map j: (X,A) — (Y’,Y) which induces an
isomorphism j*: H*(Y",Y) =~ H*(X,A) such that there is a commutative
square

HY(Y,yo) 2> HM (YY)
~| =
Hr(A) % HrH(XA)

Since 8f* (1) = 0, it follows that 8(:) = 0, and there is v € H(Y',yo; 7) such
that v | (Y,yo) = t. Since X and Y are path connected and A is nonempty, Y’
is path connected.

Let Y=Y vI (that is, yo € Y’ is identified with 0 € I) and let
o =1¢ Y. Then Y is a path-connected space with nondegenerate base
point o. Let r: (Y,I) — (Y',yo) be the retraction which collapses I to yo and
let o = *(v) | (Y,50) € HYY,jo; 7). By theorem 7.7.11, there is an imbedding
of Y in a space Y which is a classifying space for the nth cohomology functor
with coefficients 7 and which has a universal element @ € H»Y”,go; ) such
that @|(Y,§o) = 0. Then Y” is a space of type (m,n), and there is a unique
n-characteristic element u € H*(Y”,yo; #) such that u|Y” =4 |Y”. Then
u|(Y,yo) = ¢, and it follows from theorem 8 and the commutativity of the
diagram

[S9.pos Yyo] — [S%po; Y"'.yo]
INT b
H(S9,po; )

that Y CY” is a weak homotopy equivalence. Since the composite

X% ¥ C ¥” is an extension of the composite A £> Y C Y”, it follows from
theorem 7.6.22 that f can be extended to amap X — Y. =

We now show that cohomology operations are closely related to the
cohomology of Eilenberg-MacLane spaces. Let O(n,q; 7,G) be the group of
all cohomology operations of type (n,g; 7,G). Thus 7 and G are abelian
groups and an element § € O(n,q; 7,G) is a natural transformation from the
singular cohomology functor H?(-;7) to the singular cohomology functor
Ha(- Q).

13 tHEOREM Let 7 be an abelian group and let Y be a space of type (m,n),
with an n-characteristic element « € H"(Y,yo; ). There is an isomorphism

y: O(n,q; 7.G) = HYY,yo; G)
defined by y(0) = (1) for § € O(n,q; 7,G).
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PROOF Since, by theorem 7.8.1, every pair has a relative CW approximation,
a cohomology operation corresponds bijectively to a cohomology operation on
the category of relative CW complexes. To define an inverse to vy, given
u € Ha(Y,yo; G), let 6, be the cohomology operation of type (n,q; 7,G) defined
for a relative CW complex (X,A) by
0,(v) = f¥(u) v € HYX,A; )
where fy,: (X,A) — (Y,yo) is a map such that f¥ (1) = v (f, exists and is unique
up to homotopy, by theorem 10). Then
Y(0u) = 0u(t) = 1§ (u) = u

showing that the map u — 6, is a right inverse of y. To show that it is also a
left inverse of vy, let (X,A) be a relative CW complex and let v € HYX,A; 7).
We must show that 0,4(v) = 8(v). Let f,: (X,A) — (Y,yo) be such that
f¥() = v. Then we have
(o) = 6(fF (W) = f30) = fF{¥0) = ye(v) =
We present one application of this result.
14 cororLarY Let 8 be a cohomology operation of type (n,q; m,G). For any
relative CW complex (X,A) the map
6: Hv(X,A) x (LI); m) — HY((X,A) x (L1); G)
is a homomorphism.

prooF The collapsing map
k(XX LAXTIUXXID) - XXI/AXITUXXI)

induces isomorphisms in cohomology. Furthermore, X X I/(A x I U X X I)
is homeomorphic to S(X/A) (where X/A is understood to be the disjoint
union of X and a base point x, in case A is empty). Thus it suffices to show
that if X’ is any pointed CW complex, then the map

6: H"(SX ,x0; m) — HY(SX'xb; G)
is a homomorphism.

Let Y be a CW complex of type (7,n), with n-characteristic element ¢,
and let Y’ be a space of type (G.q), with g-characteristic element ¢.
Let f: Y —> Y’ be a map such that f*¢' = 6(:). There is then a commutative
diagram

[SX'xbs Yoyol 2 [SX'ah; Y'ys]
v = =|¥
H?(SX'xb; m) 2> Ha(SX';xb; G)
It is trivial that f, is a homomorphism when the top two sets are given group
structures by the H cogroup structure of SX’. By lemma 7.7.6, it follows that
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both vertical maps are homomorphisms. Hence the bottom map 6 is a
homomorphism. =

Let I € HY(LI; Z) be a generator and define an isomorphism
m H(X,A; G') = H*Y((X,A) X (LI); @)

by 7(u) = u X I. Given a cohomology operation 6 of type (n,q; ,G), its
suspension SO is the cohomology operation of type (n — 1,9 — 1; 7,G)
defined by (88)(u) = 7 07(u) for u € H*"1(X,A; 7). Then corollary 14 implies
that the suspension of any cohomology operation is an additive cohomology
operation.

We now extend theorems 10 and 12 to other spaces Y by restricting the
dimension of the relative CW complex (X,A). Let Y be an n-simple (n — 1)-
connected pointed space for some n > 1 [if n = 1 then 71(Y,y,) is abelian].
If « € H*(Y,yo; 7) is an n-characteristic element for Y, an argument similar to
that in theorem 12 shows that Y can be imbedded in a space Y’ of type (m,n)
having an n-characteristic element u € H*Y ,yo; m) such that u|Y =« It
follows that the inclusion map Y C Y’ is an (n + l)-equivalence. Then
theorems 7.6.22 and 10 yield the following generalization of theorem 10.

15 tHeEOREM Let 1 € HYY,yo; 7) be n-characteristic for an n-simple (n — 1)-
connected pointed space Y and let (X,A) be a relative CW complex. The map
Y [XA; Yyo] — HYX,A; m)
defined by [ f] =
ifdim (X — A) <n

For the special case Y = S let s* € H"(S",py; Z) be a generator. Then
§* is an n-characteristic element of S$», and we obtain the following Hopf
classification theorem.?

16 coroLLARY Let (X,A) be a relative CW complex, with dim (X — A) < n
where n > 1. If s* € HS"po; Z) is a generator, there is a bijection

Yer: [X,A; Snpo] = HY(X,A; Z)
defined by Ysx ([ f]) = f*(s*). =

Similarly, we obtain the following generalization of theorem 12.

1) is a bijection if dim (X — A) < n and a surjection

f*G
+1 =

17 taEOREM Lett € HY(Y,yo; m) be n-characteristic for an n-simple (n — 1)-
connected pointed space Y and let (X,A) be a relative CW complex, with
dim (X — A) <n + 1. Amap f: A — Y can be extended over X if and only
if f*(1) = 0in H""Y(X,A; 7). =

This specializes to the following Hopf extension theorem.
! See H. Hopf, Die Klassen der Abbildungen der n-dimensionalen Polyeder auf die n-dimen-

sionale Sphére, Commentarii Mathematici Helvetici, vol. 5, pp. 39-54, 1933, and H. Whitney,
The maps of an n-complex into an n-sphere, Duke Mathematical Journal, vol. 3, pp. 51-55, 1937.
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18 cororLary Let (X,A) be a relative CW complex, with dim (X — A) <
n 4+ 1, and let s* € HS"po; Z) be a generator. A map f: A — S* can be
extended over X if and only if 6f*(s*) = 0in H""Y(X,A; Z). =

2 PRINCIPAL FIBRATIONS

This section is concerned with fibrations whose fiber is an Eilenberg-MacLane
space. We shall develop an obstruction theory for the lifting problem of maps
of relative CW complexes to such fibrations. In the next section we shall show
that many maps can be factored up to weak homotopy type as infinite com-
posites of such fibrations. In this way the obstruction theory for these special
fibrations leads to an obstruction theory for arbitrary maps.

For any pointed space B’ there is the path fibration PB’ 25 B’, where PB’
is the space of paths in B” beginning at the base point bg. Under the expo-
nential correspondence there is a one-to-one correspondence between homot-
opies H: X X I — B’ such that H(x,0) = by and maps H: X — PB’, the cor-
respondence defined by H'(x)(¢) = H(x,t). This easily implies the following result
(which is dual to lemma 7.1.1).

1 LEmMa A map X — B’ is null homotopic if and only if it can be lifted
to the path fibration PB’ — B’. =

If §: B— B’ is a base-point-preserving map, there is a fibration p,: E, — B
induced from the path fibration PB’ — B’. This induced fibration is called the
principal fibration induced by 6 and has fiber p,71(bo) = by X 2B. A
straightforward verification shows that there is a covariant functor from the
category of base-point-preserving maps between pointed spaces to the sub-
category of fibrations which assigns to § the principal fibration induced by 6.

Let (X,A) be a pair and let i: A C X be the inclusion map. Let p,: E, — B
be the principal fibration induced by 6: B — B’. Recall that a map pair
fi i — p, (defined in Sec. 7.8) is a commutative square

A LS E,

i Jpe

x LB
The set of homotopy classes [i;p,] of map pairs from i to p, is the object function
of a functor of two variables contravariant in pairs (X,A) and covariant in base-
point-preserving maps 6. We are interested in studying in more detail the
relative-lifting problem (that is, the map p: [X;E,;] — [i;p,]) for this situation.
Because p, is an induced fibration, the relative-lifting problem is equivalent
to an extension problem, as shown below.

Let p,: E; — B be induced by 6: B — B’. For any space W a map
f+ W— E,; consists of a pair fi: W— B and f,: W— PB’ such that
p’° fo = 6 fi. By the exponential correspondence, f; corresponds to a
homotopy F: W X I — B’ from the constant map to & ° f;. Thus, given a map
fi: W — B, there is a one-to-one correspondence between liftings f: W — E,
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of fi and homotopies F: W X I — B’ from the constant map to ¢ ° f.

Let (X,A) be a pair with inclusion map i: A C X and let f: i — p, be a
map pair consisting of maps f'": A — E,; and f": X — B such that p, ° f”" =
f’ °i. We define a map

0(f): (AXIUXXI, XXO0)— (B,bp)

by the conditions 6(f)(x,0) = by, O(f)(x,1) = 0f'(x), for x € X, and
6(f)|A x I is the homotopy from the constant map A — by to the map
6 ° f’ o i corresponding to the lifting f”” of f’ ° i. There is then a one-to-one
correspondence between liftings of f and extensions of 6( f) over X X L

We now specialize to the case where B’ is a space of type (7,n), with
n > 1 and 7 abelian, and we let « € H*B’,bj; 7) be n-characteristic for B'.
In this case, if : B — B’ is a base-point-preserving map, the induced fibration
pes: E; — B is called a principal fibration of type (m,n). If (X,A) is a relative
CW complex, then (X,A) X (II) is also a relative CW complex, and given a
map g¢: A X I U X X I — B, it follows from theorem 8.1.12 that g can be
extended over X x I if and only if 8g*(:) = 0 in H*((X,A) x (LI); m).
In particular, given a map pair f: i — p,, there is a lifting of f if and only if
80(f)* () = 0. The obstruction to lifting f, denoted by c(f) € H(X,A; m),
is defined by

8G(f)* (¢) = (=1)(e(f))

where 71 HY(X,A; 7) =~ H*1((X,A) X (LI); m) is the map 7(u) = u X I, de-
fined in Sec. 8.1 [I € HY(LI; Z) is the generator such that if 0 € HO({0}; Z)
and 1 € HO({1}; Z) are the respective unit integral cohomology classes, then,
identifying HY(I,Z) ~ HO({0};Z) ©® HO({1};Z), we have 81 = 1= —60].

2 EgxampLE In case A is empty, a map pair f: i — p, is just a map
f’: X — B. In this case 6(f): X X I — B’ is such that 6(f)(x,0) = by and
0(f)(x,1) = Of'(x). Then 6( f* (1) = f'*6*(:) X 1, and so, by statement 5.6.6,

BO(f)* (1) = (=1)nf *0*() X I = (=1)mf *6* (1)
Therefore, in this case ¢(f) = f'* 8% (1).

It is clear from the definition that the obstruction to lifting f is functorial
in i and 6 and that it vanishes if and only if there is a lifting of f. We obtain
a similar cohomological criterion for the existence of a homotopy relative to f
of two liftings of f.

Let f: i — p, be a map pair, where (X,A) is a relative CW complex, with
i: A C X, and p, is a principal fibration of type (m,n). Given two liftings
fo, fi: X — E, of f, let g: i — p, be the map pair consisting of the commuta-
tive square

AxIUXxI 5 E,

7], pe

X x I £ B
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where g’ is the composite X X I — X L5 B and g” is the map such that

g’ (x,0) = folx) and g”’(x,1) = fi(x) forx € Xand g"(a,t) = f"(a)fora € A and
t € . Then f; and f; are homotoplc relative to f if and only if g can be lifted.
The obstruction to lifting g is an element c(g) € H*((X,A) X (LI); =), and we
define the difference between fo and f1, denoted by d( fo.f1) € H*1(X,A; =), by

olg) = (= 1r(d(fo.f1)

[so 80(g)* (1) = 72(d( fo.f1))]- Then fo and f1 are homotopic relative to f if and
only if d( fo,f1) = 0. The difference d( fo.f1) is functorial and has the following
fundamental properties.

3 1Emma  Given a map pair f: i — p, and liftings fo, f1, fo: X — E,, then
d(fo.fo) = d(fo.fr) + d(frf2)

prOOF Let I; = [0,%4] Iy = {0,%), I = [%,1], and I = {%,1} and define a
map pair G: i — p, consisting of the commutative square

AxIUXx(Ilulz)—»Ee
lj\l/ \LP&
Xx1I S5 B

where G'(x,f) = f'(x), G"(a,t) = f"(a), G"(x,0) = fo(x), G"(x,%%) = fi(x), and
G"(x,1) = fo(x). Then ¢(G) € H*(X,A) X (I I U 1,); ), and by the naturality
of ¢(G) and the definition of d, we see that

o(G) | (X,A) X (LI) = (=1)1(d( fo.f2))

o(C) | (XA) X (k) = (= 1rmd{fof)

c(G) [ (X,A) X (Iglz) = (=1)"72(d( fr.f2))
where 12 H1{(X,A) =~ HY((X,A) X (I.I1))
and ro: H"1(X,A) = H{((X,A) X (I2,I2))

are defined analogously to 7. From these properties, an argument similar to
that used in proving that the Hurewicz homomorphism is a homomorphism
(cf. theorem 7.4.3) shows that

d(fo.fe)) = 1(d( foofr)) + T(d( fr.f2))
Since 7 is an isomorphism, this is the result. =

4 rtHEOREM Given a map pair f: i — p,, a lifting fo: X — E, of f, and an
element v € H""Y(X,A; 7), there is a lifting f1: X — E, of f such that
d f—‘o,‘l = 0.

proor The map 0(f): A X I U X X I — B’ used in defining c(f) admits an
extension ho: X X I — B’ which corresponds to the lifting fo X — E,. We
seek another extension of 8( f) which will correspond to the desired lifting fi
offLetF(A><I><IUX><(0><IUI><I)X><I><O) — (B',bo) be the
map defined by Flatt) = 0(f)at) for a €A and t ' €1, and
F(x,0,t) = ho(x,t), F(x,t,0) = by, and F(x,t,1) = ho(x,1) for x € X and t € L
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Because X X I X 0 is a strong deformation retract of the space
AXIXIUXX(0XxIUI X I), there is ahomotopy relative to X X I X 0
from F to the constant map F' from A X I X I U X X (0 x I U I X I) to b,

Let G: (X X 1 X LA X1XITUX X1 xI)— (B,b}) be a map such
that G*()) = (= 1)»"1o X 1 x I € HY((X,A) X {1} X (LI); =) [such a map
exists, by theorem 8.1.10, because (X,A) X {1} X (LI) is a relative CW com-
plex]. There is a well-defined map

H:(AXPUXXEAXIXIUXX(0XIUIXI)— (B,bp)
such that H' | X X 1 X I = G. Then
HIAXIXIUXX(O0XIUIXI)=F

and because (X,A) X (I x LO X I UI X I) is a relative CW complex, the
homotopy F' ~ Frel X X I X 0 extends to a homotopy H' ~ Hrel X X I X 0,
where

HAXIXIUXXIXIUXXIXIXXIXO0)— (B,b)

is an extension of F. Let hy: X X I — B’ be defined by hq(x,t) = H(x,1,1).
Since H is an extension of F, hy is an extension of §( f), and hence h; corre-
sponds to a lifting f; of f.

We now show that f; has the desired properties. The definition of the
map pair g: i’ — p, used to define d( fo,f1) is such that 8(g) = H. Therefore

T2(d( fo.fr)) = SH* (1) = 8H * (1)

H is a map from (AX P UXXPAXPEUXX(0OXIUIXI)) to
(B',bp) whose restriction to X X 1 X Iis G. From the commutativity of the
diagram [where the map p is given by pw X1 XI)=w x I for
w € H*(X,A)]

HAXPEPUXX2ZAXPEPUXX(OXIUIXI)

SN
HAXPUXXP2XXIx0 HXxXx1XLAX1xIUXXxI1xI
8], wl=
H™I(XA) X (R2) {2 HA(X,A) X (LD)

it follows that

SH'*() = (=1 1muG* () = 7(o x 1) = 72(v)

Since 72 is an isomorphism, d( fo,f1) = v. ®

3 tHEOREM Let (X,A) be a relative CW complex and let (X’,A) be a sub-
complex, with inclusion maps i: A C X, i1 A C X', and i": X' C X. Given a
map pair f: i — p, (consisting of f”": A — E,; and f": X — B) and two liftings
2o, §1: X' = Ey of f|i": 7" — py, let go, g1: i — p, be the map pairs consisting,
respectively, of the commutative squares
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X 45 E, X £ E,

b 4 I

x 5B x L5 B
Then 8d(g0,81) = c(go) — clg1)

where 8 HYX',A; m) — HYX.X'; m).
PROOF Let h: i — p, be the map pair defined by the commutative square
AxIUX xI25 E,
fl lps
X'xIuxxl-X% B
where h”(a,t) = f”(a) for a € A and t € I, h"(x',0) = go(x) and h"(x',1) =

gi(x’) for ¥ € X', and R'(xt) = f'(x) for (xt) €X' XTI UX X I. Then
c(h) € HX' x T U X x I, A X I U X’ X I; ). There is an isomorphism
HX' x ITUXXTLAXIUX xIn=

H((X',A) X (LI); m) @ HY((X,X") X I; m)
induced by restriction. By the naturality of the obstruction, c(h) corresponds

to (—1)mrd(go,g1) = (—1)"d(go,g1) X I in the first summand and to

c(go) X 0 + ¢(g1) X Lin the second summand.
Let h: i — p, be the map pair defined by the commutative square

AxIUX xI®E,
Ll lps
XxI %58

where h'(x,t) = f'(x) for x € X and ¢ € I. Then

ch) e HYX X , A X T U X X I; m)
and by the naturality of the obstruction again,
M| (X XTUXXLAXTUX XI)=ch)
From the exactness of the sequence

H(X X LAXIUX x1)—H(X x TUXXLAXIUX x1)

S H X X L X xTUXxI)
it follows that 8c(h) = 0. Therefore, in H*1((X,A) X (LI); 7) we have (using
theorem 5.6.6)

0 = 8[(—1)"d(Zo,g1) X I + c(go) X 0 + c(g1) X 1] )
= (=1)"8d(go.g1) X I — (=1)rc(go) X I+ (=1)"c(g1) X 1

Therefore 7(8d(go,81) — c(go) + ¢(g1)) = 0, and since 7 is an isomorphism, the
result follows. =
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We compute the obstruction ¢(f) explicitly for the case of a fibration
p’: @B’ — bj, where B’ is a space of type (7,n), with n > 1. Then QB is a
space of type (7, n — 1), and if ' € H" 1(QB’,wp; 7) is (n — 1)-characteristic
for 2B’ and « € H*(B',bp; ) is n-characteristic for B’, then 8" and p* 1 [where
8: H"Y(QB',wo) =~ HYPB',QB’) and p: (PB',QQB’) — (B',b})] are both elements
of H*(PB',QB’; 7). The characteristic elements ¢ and ¢/ are said to be related
if 8" = p*.. Given one of ¢ or ¢, it is always possible to choose the other one
(uniquely) so that the two are related.

6 THEOREM Let 1 € HY(B',by; m) and V € H" Y(QB',wp; ) be related
characteristic elements. Let (X,A) be a relative CW complex, with inclusion
map it A C X. Given a map pair f.i— p, where p': QB — bj, then
o(f) = —8f"*(V), where f": A — QB is part of f.
PROOF Let f: (A X I, A X 1) — (PB,QB’) be the map defined by f(a,)() =
f"(a)(#t’). Then

0(f): (AXIUXXI Xx0) — (B,bp)

is the map such that (f)|A XI=pe°f and O(f)(X x I) = bj. Let

FAXTUXXI XXI)— (B,b)) be the map defined by 0(f) and let
' (A X I, A X 0)— (2B,wh) be the map defined by f. There is then a com-
mutative diagram [in which j and j' are appropriate inclusion maps and
hi: A — (X x I, A x 0) is defined by hy(a) = (a,1)]

HYA X TU X x I, X x0)
0 _~ A 3
HYB' ) A% HyA x TU X x 1, X x ) 2> H1(X,A) X (L)
P*l ]l*l ZT (=117
HYPBQB) 1> HYA X I A X D) H(X,A)
5T ST (= Ts

H1QB wh) 1> H1A x 1A X 0) Hv1(A)

ulf; ?1/‘

Furthermore, § > 771 j/* = 771§ H"A x I U X X I, X X I) - HYX,A).
Since f” = f’° hy, then f”* = h* o f'* and we have

(=D 2e 28O f))* () = 8f " *(¢)
By definition, the left-hand side above equals —c(f). =

3 MOORE-POSTNIKOV FACTORIZATIONS

This section is devoted to a method of factorizing a large class of maps up to
weak homotopy type as infinite composites of simpler maps, the simpler maps
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being of the same weak homotopy type as principal fibrations of type (7,n)
for some 7 and n. The cohomological description of the lifting problem for
these fibrations, given in the last section, will lead us ultimately to an iterative
attack on general lifting problems.

Given a sequence of fibrations Ey < E; <~ . . ., we define

E, =lim. {Egpe} = {(eq) € X Eq|pqleq) = €q-1}

and we define a: E,, — E, to be the projection of E,, to the gth coordinate.
Then each map a, is a fibration and ay = pgi1 © ag41 for ¢ > 0. For any
space X a map f: X — E,, corresponds bijectively to a sequence of maps
{ fot X = Eg}qs0 such that f; = pgy1 © foi1 for ¢ > 0 (given f, the sequence
{ f4} is defined by f; = a4 ° f). In particular, given a pair (X,A) with inclusion
map i: A C X and a map pair f: i — ao consisting of the commutative square

ALS E,

il iao
x 15 E,

a lifting f: X — E, corresponds bijectively to a sequence of maps
{ fo X — Eg}¢s0 such that

(@) fo=f"X— Eo ]
(b) For g > 1 the map f;: X — E, is a lifting of the map pair from i to p,
consisting of the commutative square

A2 g,

ll ) ipq
fom1
X —_ Eq—l
In this way the relative-lifting problem for a map pair f: i — ao corresponds
to a sequence of relative-lifting problems for map pairs from i to py. In many
cases the relative-lifting problems for the fibrations p, may be simpler to deal
with than the origina!l relative-lifting problem for the fibration a.

A sequence of fibrations Eg L Ey £ s said to be convergent if for
any n < oo there is Ny, such that p, is an n-equivalence for g > N,.

Let f: Y/ — Y be a map. A convergent factorization of f consists of a
sequence {pq,Eq.fy}q>1 such that

(a) For g > 1, pg: Eq — E4_; is a fibration, and forg = 1, p1: E1 —» Y
is a fibration.

(b) For ¢ > 1, fi: Y — Eg is a map, f; = pgs+1 ° fge1 for g > 1, and
f=p°fr

(c) For any n < oo there is N, such that f; is an n-equivalence for
q > Ny

Conditions (@) and (b) imply that for g > 1, f equals the composite
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p1° -+ °pq° fo. The convergence condition (c¢) implies that, in a certain
sense, the infinite composite p1 ° pa © - - - exists.
If {pg,Eqfq}qs1 is a convergent factorization of a map f: Y/ — Y, then

the sequence of fibrations Y <2 E; Ll s convergent. The following
theorem shows that any convergent sequence of fibrations is obtained in this
way from a convergent factorization of some map.

1  tueoreM If Eq £ E; & ... is a convergent sequence of fibrations,
then {pg,Eqaq}q-1 is a convergent factorization of the map ao: E,, — Eo.

prROOF  Conditions (a) and (b) for a convergent factorization are clearly
satisfied. To prove that the convergence condition (¢) is also satisfied, given
1 < n < o0, choose N so that p, is an (n + 1)-equivalence if g > N. We
prove that q, is an n-equivalence for g > N. Because ag = py.1 ° dg41, and
Pg+1 is an (n + 1)-equivalence for g > N, it suffices to prove that ay is
an n-equivalence.

Let (P,Q) be a polyhedral pair such that dim P < n and let a: Q — E,,
and By: P> Ey be maps such that 8y | Q = ay° a. We now prove that
there is an extension f: P — E, of a such that ay° B = By. The map «
corresponds to a sequence a; = a4 ° a: Q — Eg such that ay = pyi1 ° agy1,
and to define a map 8: P — E, with the desired properties, we must obtain
a sequence of maps fB4: P — E, such that 84| Q = ag, By = pg+1 ° Bgs1, and
By = By. Such a sequence of maps {84} is defined for ¢ < N by B, =
Pg+1° « -+ ° py° By and for g > N it is defined by induction on g as follows.
Assuming 8, defined for some g > N, we use theorem 7.6.22 to find a map
B4+1: P — Eg i1 such that 87,1 | Q = ag41 and such that B; ~ pgy1 ° Byux
rel Q. We use the fact that p,_ ; is a fibration (and theorem 7.2.6) to alter B;.1 by
a homotopy relative to Q to obtain a map Bg.1: P — Eg.1 such that
Bg+1| Q = ag41 and such that 8; = pgi1 © Bgr1. Thus the sequence {B,} can
be found, and hence a map B: P — E_ with the requisite properties exists.

Taking P to be a single point and Q to be empty, we see that ay is
surjective, and so ay maps 7o(E,) surjectively to mo(Ey). Taking (P,Q) = (L),
we see that ay maps 7o(E..) injectively to mo(Ey). Then ay induces a one-to-
one correspondence between the set of path components of E, and the set of
path components of Ey.

Lete, = (¢q) € E, be arbitrary andlet 1 < k < n. Taking (P,Q) = (Sk,z0)
it follows that ayy maps mi(E...e, ) epimorphically to mx(Ey,en). For 1 < k < n,
taking (P,Q) = (E**+1,8¥), it follows that ayy maps 7x(E..,ey ) monomorphically
to mi(En,ey). Hence ay is an n-equivalence. =

2  coroLLARY Let {pg,Eqfi}q-1 be a convergent factorization of a map
f:Y - Yandlet f: Y — E, be the map such that ag° f' = f, forqg >1
and ao ° f' = f. Then f’ is a weak homotopy equivalence.

PROOF For any 1 < n < oo there is g such that a, and f, are both
(n + 1)-equivalences (by theorem 1). Then f' is also an n-equivalence (because
aq ° ' = f,). Since this is so for all n, " is a weak homotopy equivalence. =
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In particular, given a convergent factorization {pg,Eq.f;}¢>1 of a weak
fibration p: E — B, there is a weak homotopy equivalence g: p — ag consist-
ing of the commutative square

E IS E,

TR
B L B

If (X,A) is a relative CW complex, with inclusion map i: A C X, it follows
from theorem 7.8.12 that the relative-lifting problem for a map pair h: i — p
is equivalent to the relative lifting problem for the map pair g ° h: i — aq.
We shall now add hypotheses which will ensure that the sequence of fibra-
tions into which the fibration ay is factored (namely, the fibrations {p,}) leads
to relative-lifting problems which can be settled by the methods of the last
section.

A Moore-Postnikov sequence of fibrations E, LE & isa convergent
sequence of fibrations such that p,: E; — E,_4 is a principal fibration of type
(Gg.ng) for g > 1. A Moore-Postnikov factorization of amap f: ¥/ — Yisa
convergent factorization {pgEqf;}qs1 of f such that Eg 2 E; &2 ... is a
Moore-Postnikov sequence of fibrations. A Postnikov factorization of a space
Y’ is a Moore-Postnikov factorization of the map f: Y — Y, where Y is the
set of path components of Y’ topologized by the quotient topology and f is
the collapsing map. Thus, if Y’ is path connected, a Postnikov factorization of
Y" is a Moore-Postnikov factorization of the constant map Y — yo.

A Moore-Postnikov factorization of a map is a factorization of the map
(up to weak homotopy type) as an infinite composite of elementary maps.
The relative-lifting problem associated to this sequence is thereby factored
into an infinite sequence of elementary relative-lifting problems. We shall
show that Moore-Postnikov factorizations exist for a large class of maps
between path-connected spaces.

Let £ Y — Y be a map between path-connected pointed spaces. For
n > 1an n-factorization of fis a factorization of fas a composite Y’ &> E' 2 Y
such that

(a) E’ is a path-connected pointed space, p’ is a fibration, and b’ is a
lifting of f (that is, f = p" ° b")

(b) by: mg(Y') — mg(E’) is an isomorphism for 1 < ¢ < n and an epimor-
phism for ¢ = n (that is, b’ is an n-equivalence)

(¢) pi: my(E') — m,(Y ) is an isomorphism for ¢ >> n and a monomorphism
forg=n

A map f: Y — Y between path-connected pointed spaces is said to be
simple if fu(71(Y’)) is a normal subgroup of 71(Y) and the quotient group is
abelian, and if (Z;Y") is n-simple for n > 1 (as defined in Sec. 7.3). We are
heading toward a proof of the result that a simple map admits Moore-Postnikov
factorizations. We need one more auxiliary concept.
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Given a pointed pair (X,A) of path-connected spaces, a cohomology
class v € HYX,A; 7) is said to be n-characteristic for (X,A) if either of the fol-
lowing conditions hold:

(@) n = 1 and ig(71(A)) is a normal subgroup of 71(X) whose quotient
group is mapped isomorphically onto 7 by the composite

71(X)/i,(m1(A)) > Hy(X) /iy (H1(A)) L5 Hy(X,A) 22>
(b) n > 1 and the composite
Ta(X,A) % Hy(X,A) 205
is an isomorphism

In case A = {x0}, the concept of n-characteristic element for the pair
(X,{x0}) agrees with the concept of n-characteristic element for the space X
as defined in Sec. 8.1.

3 1EmMMa Leti: A C X be a simple inclusion map between path-connected
pointed spaces such that the pair (X,A) is (n — 1)-connected, where n > 1.
Then there exist cohomology classes v € HWX,A; m) which are n-characteristic
for (X,A), where m = 71(X)/ig(m1(A)) for n = 1 and 7 = 7,(X,A) forn > 1.

proor If n = 1, it follows from the absolute Hurewicz isomorphism theorem
applied to A and to X that there are isomorphisms

m1(X)/i(m1(A)) & Hy(X) /iy (Ha(A)) 2 Hy(XA)

By the universal-coefficient formula for cohomology, there is also an
isomorphism

h: H(X,A; 7) ~ Hom (Hy(X,A), )

Hence, if 7 = 71(X)/ig(m1(A)), there exist I-characteristic elements
v € HY(XA; ).

If n > 1, it follows from the relative Hurewicz isomorphism theorem and
the universal-coefficient formula for cohomology that there are isomorphisms
@: mo(X,A) = Hyp(X,A) and h: HYX,A; 7) = Hom (H,(X,A),7). Therefore, if
7 = mp(X,A), there are n-characteristic elements v € HY(X,A; 7). =

4 1LEMMA Let (X,A) be a pointed pair of path-connected spaces (n — 1)-
connected for some n > 1 and such that the inclusion map i: A C X is simple.
Then there is an n-factorization A ¥ E' 25 X of i such that p’ is a principal
fibration of type (m,n), where m = w1(X)/ig(m1(A)) if n = 1 and 7 = 7,(X,A)
if n> 1.

PROOF By lemma 3, there is a class v € H¥X,A; 7) which is n-characteristic
for (X,A). Let CA be the cone (nonreduced) over A and observe that {X,CA}
is an excisive couple in X U CA. Therefore there is an element
v’ € HY(X U CA; m) corresponding to v under the isomorphisms

Hn(X U CA; m) << HYX U CA, CA; m) = H(X,A; m)



442 OBSTRUCTION THEORY CHAP, 8

It is possible to imbed X U CA in a space X' of type (7,n) having an
n-characteristic element ' such that /' | X U CA = v'. Let p’: E' — X be the
principal fibration induced by the inclusion X C X" and let p4: E{ — A be
the restriction of this fibration to A. There is a section s: A — E/ such that
s(a) = (a,w,) for a € A, where w, is the path from xo to the vertex of CA
followed by the path from the vertex of CA to a (that is, wg(t) = [x0, 1 — 2]
for 0 <t < % and wy(t) = [a, 2t — 1] for % < ¢t < 1). We define b': A — E’
to be the composite A = E/{ ¢ E’ and shall prove that A £ E' 2 X is an
n-factorization of i.

The fiber of p’ (and hence also of pjf) is X', and we define g: E{ — QX'
by gla,w) = w * (s(a))~1. Then g | 2X": €X' — QX' is homotopic to the identity
map. If i": QX' C E/ is the inclusion map, it follows from the exactness of the
homotopy sequence of the fibration pj: E{ — A that there is a direct-sum
decomposition

7o Ed) = 4m(QX) @ symg(A) g > 1

(This is a direct-product decomposition for ¢ = 1, but we shall still write it
additively.) We define a homomorphism A: 7(X,A) — 7,_1(QX’), where
g > 1, to be the composite

Ty XA) 2> m(E'ER) > 74 1(E4) 55 my1(2X)
We show that the following diagram commutes up to sign:
TA) 255 m(X) L5 m(XA) D mei(A)
b b
TlE') 25 my(X) 5 7y 1(QX) 5 7wy o(E)
In fact, the left-hand and middle squares are easily seen to be commutative.
We shall show that bl > 9 = —if ° A
For g = 1 this is so because mo(A) = 0 implies that b} ° 9 is the trivial
map and the fact that j is surjective and ik ° A °ju = i% ° 0 = O implies
that i ° A is also the trivial map. For ¢ > 1 we have
@ = Qg0 + sypdpat a € Tga(Ed)
Since the composite 7 (E',E{) <> m,_1(E,) i 7mq-1(E’) is trivial, it follows that
for B € 7 (EE})
0 = ii40B = i4yilgs0B + ihysypiyoB
= 142408 + blOpsf
By definition of A, we see that Ap.f8 = g.0f. Therefore

iApuf + biopyB = 0

Since py: mo(E',E4) = m(X,A), this proves by ° 8 = —ij ° A,
A straightforward verification shows that A is also the composite
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Ta(X,A) — (X U CA, CA) << my(X U CA) — (X)) a;) _1(82X)

The construction of X’ and v € HYX’,7) shows that there is a commutative
diagram

mo(X,A) — (X U CA, CA) < mn(X U CA) — my(X')

';vl: qi ¢ l = l(p

Ha(X,A) — Hy(X U CA, CA) < Hn(X U CA) — Hu(X))

=~ h(v') =
h(u)\ \ / /h( )

Therefore \: 7,(X,A) = 7,_1(£X").

In case n = 1, 3 m(X) = mo(QX') is surjective [because mo(A) = 0], and
so E’ is path connected. If n > 1, E’ is path connected because 7o(2X’) = 0.
Therefore E’ is a path-connected pointed space. Since 7(2X’) = 0 for ¢ > n,
it follows from the exactness of the homotopy sequence of the fibration
p's E' — X that pl mg(E') — me(X) is an isomorphism for ¢ >n and a
monomorphism for g = n.

Because \: 7y (X,A) — m,_1(Q2X’) is a bijection for ¢ < n (the only non-
trivial case in these dimensions being g = n), it follows from the five lemma
and the commutativity up to sign of the diagram on page 442 that
bl my(A) — me(E’) is an isomorphism for 1 < g < n and an epimorphism for
q = n. Therefore b’ and p’ have the properties required of an n-factorization
ofi. =

5 coroLLARY Let g: X' — X be a simple map between path-connected
pointed spaces such that for some n > 1 the map gy mo(X') — mo(X) is an
isomorphism for 1 <q <n — 1 and an epimorphism for ¢ = n — 1. Then

there is an n-factorization X' 25 E' 25 X of g such that p' is a principal
fibration of type (m,n) for some abelian group .

proOF Let Z be the reduced mapping cylinder of g (that is, the mapping
cylinder of g|x: x5 — xo has been collapsed to a point). Then (Z,X') is a
pointed pair of path-connected spaces (n — 1)-connected and with simple
inclusion map i: X C Z. By lemma 4, there is an n-factorization X’ %5 E” 25 Z
of i such that p”’ is a principal fibration of type (,n). Let p": E' — X be the
restriction of p” to X. Then E’ C E” is a homotopy equivalence, so there is a
map b": X' — E’ such that b” is homotopic to the composite X' & E' C E”.
Then p’ ° b is easily seen to be homotopic to g. By the homotopy lifting
property of p’, there is a map b': X’ — E’ homotopic to b” such that

p'° b’ =g Then XY E L2 X s easily verified to have the requisite
properties. ®
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We are now ready to prove the existence of Moore-Postnikov factoriza-
tions of a simple map between path-connected pointed spaces.

6 THEOREM Let f: Y — Y be a simple map between path-connected
pointed spaces. There is a Moore-Postnikov factorization {pg,Eqfs}e>1 Of f
such that for n > 1 the sequence

Y/_f:n_)En P1° - °Pn Y
is an n-factorization of f.

PROOF By induction on q, we prove the existence of a sequence {pg,Eq.fq} 421
such that

(a) For n = 1 the sequence Y’ Dy Ey 2% Yis a 1-factorization of f.

(b) Forn > 1 the sequence Y’ Iy E, 25 E,_;is an n-factorization of fr_1.

(¢) Forn > 1, p, is a principal fibration of type (m,,n) for some .

Once such a sequence {p,,E,.fo} has been found, it is easy to verify that
it is a Moore-Postnikov factorization of f with the desired property. Therefore
we limit ourselves to proving the existence of such a sequence.

By corollary 5, with n = 1, there is a 1-factorization Y’ £ E; 2> Y of f
with p; a principal fibration of type (71,1) for some 1. This defines p1, E1,
and f1. Assume {pg,E,.f,} defined for 1 < g < n, where n > 1, to satisfy (a),
(b), and (c) above. By corollary 5, there is an n-factorization Y’ LN N

of f,_1 such that p, is a principal fibration of type (m,,n) for some 7,. Then
Pn, En, and £, have the desired properties. =

7 coroLLARY Let Y’ be a simple path-connected pointed space. Then Y’
has a Postnikov factorization {pg,Eqfq}qs1 in which my(E,) = 0 for ¢ > n
and fp: Y — E, is an n-equivalence.

PrROOF If Y is a simple space, the constant map Y’ — yq is a simple map.
The result follows from theorem 6. =

In the above the spaces E, approximate Y’ in low dimensions. We now
present an alternate method of approximating a space in high dimensions by
killing low-dimensional homotopy groups.

8 coroLLary Let Y be a simple path-connected pointed space. There is a

Moore-Postnikov sequence of fibrations Y <2 E; < ... such that E, is
n-connected and py ° - - - ° pn: Ey — Y induces isomorphisms mo(E,) = my(Y)
forg > n.

prooF If Y is a simple space, the inclusion map yo C Y is a simple map.
The result then follows from theorem 6. =

In the last result the fibration py: E1 — Y has the homotopy properties ofa
universal covering space of Y. The fibration py ° - - - ° pp: E, — Y is a kind
of “n-covering space.”
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4 OBSTRUCTION THEORY

In this section we show how to use Moore-Postnikov factorizations to study
the relative-lifting problem. A sequence of obstructions to the existence of a
lifting (or to the existence of a homotopy between two liftings) is defined
iteratively, and we apply the general machinery to the special case where
either the first one or the first two obstructions are the only ones that enter.
Let p: E — B be a fibration between path-connected pointed spaces and
assume that p is a simple map. By theorem 8.3.6, there exist Moore-Postnikov
factorizations {pq,Eqfq}e>1 of p. By corollary 8.3.2, there is a map p: E— E,,
which is a weak homotopy equivalence. Since p = ao ° p’, where a¢: E,. — B,
if (X,A)is arelative CW complex, withi: A C X, it follows from theorem 7.8.12
that the relative-lifting problem for a map pair from i to p is equivalent to the
relative-lifting problem for a corresponding map pair from i to ao. Thus we
are led to consider the relative-lifting problem for a map pair from i to ao.

Let Eg <2 E; <22 ... be a sequence of fibrations with limit E,, and maps
ag E,. — E4 and let (X,A) be a relative CW complex, with inclusion map
ir A C X. A map pair f: i — ago is a commutative square

A LS E,
il iao
x L5 E,

where f*’ corresponds to a collection {f;} A — E;}4.0suchthatpg.q1° fihn = f)
forg > 0. For g > lletf;:i— py° .- ° pg be the map pair consisting of
the commutative square

ﬁ—->Eq

L lpem

X X5 E,

-

If f: X — Egis a lifting of f,, then p, ° fy is a lifting of f;_; for ¢ > 1 and a
lifting f: X — E,, of f corresponds to a sequence { f;: X — E;}4>1 such that

(a) fyisa lifting of f, for g > 1.

(D) pas1 °® for1 = folorg > 1.

Given a lifting f,;: X — E, of f, for ¢ > 1, let g( f,): i — pg.1 be the map
pair consisting of the commutative square

fd
ALy g

il — lpqu

X I E,
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A map fyi1: X — Egyq is a lifting of g( f;) if and only if it is a lifting of f.1
such that pg,1 ° fyr1 = for Thus a sequence of maps { f;: X — Eg}q51 satisfies
conditions (a) and (b) above if and only if it has the following properties:

¢) f1 is a lifting of fi.
(d) For q > 1, f,11 is a lifting of g(f,).

We now add the hypothesis that Eq <2 E; < . . . is a Moore-Postnikov
sequence of fibrations. For each g > 1, pq is then a principal fibration of type
(mgng). It follows from Sec. 8.2 that f; can be lifted if and only if
c( f1) € Hm(X,A; m,) is zero. The class ¢( f1) is called the first obstruction to
lifting f.

Assume that for some g > 1 there exist liftings f,_1: X — E,_; of the
map pair fo_1: 4 — p1° -+ ° pg-1. We then obtain map pairs g( f;_1): i — pg
and corresponding elements c¢(g(f,-1)) € H"(X,A; mg). The collection
{clg( fq-1))} corresponding to the set of all hftlngs fo1: X — Eq 1 of fo 1 s
called the gth obstruction to lifting f. It is a subset of H"(X,A; 7g) and is de-
fined if and only if f;_1 can be lifted. It is clear that there is a lifting of f, if
and only if the gth obstruction to lifting f is defined and contains the zero
element of H™(X,A; 7).

Corresponding to a Moore-Postnikov sequence of fibrations we have been
led to a sequence of successive obstructions. The first obstruction is a single
cohomology class, while the higher obstructions are subsets of cohomology
groups. In some cases these obstructions can be effectively computed in terms
of the given map pair f: i — ao, and this computation provides a solution of
the lifting problem in these cases. In general, however, the determination of
the successive obstructions involves an iterative procedure of increasing com-
plexity and has not been effectively carried out in each case.

We illustrate this technique by applying it to the Postnikov factorization
of a simple path-connected pointed space Y, given in corollary 8.3.7. There is
a Postnikov factorization {pg,Eq.fq}¢>1 0f Y in which 7o(E,) = 0 for g > mand
fm: Y — E, is an m-equivalence. We call this the standard Postnikov factori-
zation of Y. By corollary 8.3.2, there is a weak homotopy equivalence
f: Y — E,, and so we consider the lifting problem for a map i — ao, where
i: A C X and ao: E,, — yo. Since yo is a point, this is equivalent to the exten-
sion problem for a map f: A — E,.

Thus we seek a sequence of maps f,: X — E, such that f;: X — Eqis an
extension of a; ° f” and f;;1: X — Egyy for ¢ > 1 is alifting of the map pair
g(fo): i — pqs1 consisting of

A g1 ° f” Eq+1

il . lpw

X——L»Eq

Since pg41 is a principal fibration of type (7¢(Y,yo), g + 1), the obstruction to
lifting g(f,) is an element of H¥*1(X,A; m¢(Y,yo)). Hence there is defined a
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sequence of obstructions to extending f”: A — Y, the (¢ + 1)st obstruction
being a subset of HI (X, A; 7y(Y,yo)). If Y is (n — 1)-connected for some
n > 1, the lowest-dimensional nontrivial obstruction is in H*"1(X,A; 7,(Y,yo)). If
t € H"(Y,yo; ) is n-characteristic for such a space Y, it follows easily from
theorem 8.2.6 that this lowest obstruction is =8f" * . This gives us the fol-
lowing generalization of theorem 8.1.17.1

1 tHEOREM Let ' € HYY,yo; m) be n-characteristic for a simple (n — 1)-
connected pointed space Y, where n > 1, and let (X,A) be a relative
CW complex such that H*Y(X,A; mg(Y,yo)) = 0 forg >n. Amap f: A— Y
can be extended over X if and only if 8f* (1) = 0 in H*1(X,A; 7).

PROOF We use the standard Postnikov factorization of Y. This leads to a se-
quence of obstructions to extending f which are subsets of HIT1{(X,A; 7,(Y,yo)).
Since these are all zero except H*"Y(X,A; m,(Y,yo)) = H**1(X,A; 7), the only
obstruction to extending f is an element of H"*(X,A; 7). By the remarks
above, this obstruction vanishes if and only if §f*(1) = 0. =

Let fo, fi: X — Y be maps and define g: X X [ - Y by g(x,0) = fo(x)
and g(x,1) = fi(x). For any u € HY(Y), 8g*(u) = (—=1)ar(f¥u — f¥u) in
He*Y(X x I, X X I). Therefore 8g*(u) = 0 if and only 1ffi§( ) = f¥(u), and
we obtain the following partial generalization of theorem 8.1.15 by applylng
theorem 1 to the pair (X X I, X X I.

2 THEOREM Let 1 € H*(Y,yo; m) be n-characteristic for a simple (n — 1)-
connected space Y, where n > 1, and let X be a CW complex such that
HY(X; mo(Y,yo)) = O for ¢ > n. Then fo, fi: X — Y are homotopic if and only

iff8(0) = f1@. =

This last result gives a condition that the map Y. [X;Y] — HYX,7)
be injective. The condition that , be surjective is that if {pg,Eqfs)}es1 is the
standard Postnikov factorization of Y, then any map X — E,,1 can be lifted.
The obstructions to lifting such a map lie in Hi*1(X; 7y(Y,yo)) for g > n.
Therefore, by combining these, we have the following result.

3 tHEOREM Let « € HYY,yo; 7) be n-characteristic for a simple (n — 1)-
connected space Y, where n > 1, and let X be a CW complex such that
HYX;my(Y)) = 0 and H1*\(X;my(Y)) = O for all ¢ > n. Then there is a bijection

U [ XY ] = Hr(X;7) =

These last results have been derived by assuming hypotheses which ensure
that the lowest-dimensional obstruction is the only nontrivial one. In this case
we are essentially studying maps to a space of type (m,n). The case where the
two lowest-dimensional obstructions are the only nontrivial obstructions is
essentially the study of maps to a fibration E — B of type (G,q), where B is a

1See S. Eilenberg, Cohomology and continuous mappings, Annals of Mathematics, vol. 41,
pp. 231-251, 1940.
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space of type (m,n). Before we consider this, fet us establish some cohomology
properties of X x I
Define inclusion maps

i o .
AXITUXX]1 CAXIUXXI C AXIUXXLAXIUXXI)

There is a weak retraction A X I U X X I — A X I U X X 1 defined by
r(xt) = (x,1) for (x,t) € A X I U X X I (that is, r ° i; is homotopic to the
identity map of A X I U X X 1). Using the exactness of the cohomology
sequence of (A X I U X X I, A X I U X x 1), it follows that for an arbitrary
element u € H9(A X I U X x I) there is an associated unique element
w € H(A X TUX x I, AxIU X x 1)such that

u=j%u + *ifu
Let h: (X,A) > (AXIUXXI, AXIUXX]1) be defined by
h(x) = (x,0) for x € X. Then h induces an isomorphism
e HI(A X TUXX1,AXITUXX1) =~ Hy(XA)
and we define an epimorphism
A: HiA X TU X x [) — Hi(X,A)

by A(u) = h*u’', where v' € H(A X I U X X I, A XIUX x 1) is the
unique element associated to u. Then A is a natural transformation on
the category of pairs (X,A).

4 1emMa Commutativity holds in the triangle
HiA x TU X x I) & Het1(X,A) x (L)
D Ay

Hi(X,A)

PROOF Let # X X I - A X I U X X 1 be defined by #x,t) = (x,1). Then
Fl(AXIUXxI)=randsor*itu = (F*itu)|(A X I U X X I) for
u€ H(A X TUXXxI)Foranyv € H(X X I),6v|(AXIUXxI)) =0.
Therefore, 8r*i¥u = 0, and to complete the proof it suffices to show that for
W € HA X TUX XLLAXIUXX]1), §*w) = (=1)at17h*(u’). This
follows from the commutativity of a diagram analogous to the one used in the
proof of theorem 8.2.4. =

5 coroLLARY Let (X,A) be a relative CW complex, with inclusion map
i: A C X, and let p’: QB" — b be the constant map, where B’ is a space of
type (m,n + 1). Given a map pair f: i — p" and two liftings fo, f1 X — QB
offletg”AXIUXXI—»QB’bedeﬁnedbyg"xO = folx), g"(x,1)
fi(x), and g’(at) = fo(a). If v € HYQB' ,wo; 7) and ¢ € H”“(B’ bo, 7) are
related characteristic elements, then d( fo.f1) = —Ag" * (V).
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PROOF Let g: i’ — p’ be the map pair consisting of the commutative square
AxITUXxIE ap

i'l lp/
X xI <5 by

From the definition of d( fo,f1) we have d( fo,f1) = (—1)**1771(c(g)). By theo-
rem 8.2.6 c(g) = —8g"*(/), and therefore d(fo.f1) = (—1)"r18g"* (V).
The result follows from this and lemma 4. »

6 1Emma Let ho, hy: (XA) > (AXIUXXILAXI) be defined by
ho(x) = (x,0) and hy(x) = (x,1). Foranyu € H(A x TUX X1, A X I)
Mul(A X TU X x 1)) = W (w) — ht(u)
prooF There are inclusion maps
AXIUXX1AXI) E AxITUXxLAXI é
AXIUXXLAXIUXXI)

and a weak retractionr: (A X TU X X LA X I)—> (A X IUXX 1A XI)
defined by 7(x,t) = (x,1). For v € Hi(A X I U X X I, A x I) there is an
associated unique element v’ € HI(A X I U X X I,A x I U X x 1)such that

v=f1*0 + rFii¥o

Ifk:AXIUXXfC(AxIUXxI,AXI),wethenhave

o = kK*ji*0 + K r'*it*o = j¥ov + Fitk*o
Therefore Ak¥v = h*v'. Since h = fi ° ho and hy = i} ° ¥ ° ho, we have

AR¥v = hEji*0 = hE(v — 7 *i1*v) = h§fvo — hfo =

7 coroLLARY Given a map pair g: i’ — p, where (X,A) is a relative CW
complex, i': A X I CA X I U X X I, and p: E — B is a principal fibration
of type (G,q) induced by a map 6: B — B, let fo, fi: i — p be the map pairs

fromi: A C X to p defined by restriction of g to (X,A) X 0 and (X,A) X 1,
respectively. Then

Ag*0*() = c(fo) — el f1)
where g: A X I U X X [ — B is part of the map pair g.

prROOF The obstruction ¢(g) € H(A X I U X X I, A XI G) has the prop-
erty that ¢(g) | (A X I U X X I) is the obstruction to lifting g'. Therefore

o@)| (A X TUX x I) = g*6%()

By the naturality of the obstruction, h§ c(g) = ¢( fo) and h¥ c(g) = ¢(f1). The
result now follows from lemma 6. =
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Let 6 be a cohomology operation of type (n,q; ,G). Given a cohomology
class u € H*(X;7), we define a map A(f,u): HY(X,A; ) — H%(X,A; G) by

ABu)v) = ABGER*~1(v) + k*u) o € HY(X,A; 7)

where k: A X I U X X I — X is defined by k(x,t) = x. In case 8 is an addi-
tive cohomology operation, we have

A(B,u)(v) = A R*~10(v) + K*0(u)) = 6(v)

Therefore A(f,u) = 6 if 6 is additive.

Given a cohomology operation # of type (n,q; 7,G) and a cohomology
class u € HYX;m), we define a map SA(f,u): H {(X,A; 7) — HTY(X,A; G) by
the equation SA(6,u) = 771 ° A(f,u') o 7, where v’ € HYX X I; m) is the
image of u under the homomorphism induced by the projection X X I — X.
If # is an additive operation, then SA(,u) = S6. In any case, we have the
following analogue of corollary 8.1.14.

8 wemma If 0 is a cohomology operation of type (n,q; 7.G) and
u € HYX;7), the map

SA(Q,u): HY(X,A; 7) — HY{XA; G)
is a homomorphism.

proOF Let I; = [0,%], I; = {0,%)}, I, = [%,1], and I, = {%,1}, and let
vy, v € H"YX,A; @). Let 0} = m1(v1) € H{(X,A) X (I,I)) and let
vy = Ta(v2) € HM((X,A) X (I2,l5)), and let v € H*(X,A) X (I, I; U I,)) be the
unique class such that v | (X,A) X (Ii,[;) = v} and v ]| (X,A) X (Is,I2) = vh.
Then v | (X,A) X (II) = 7(v1) + 7(v2). Since # and A are both natural,

AB,u)0) | (X,A) X (LI) = SAB,u)(vr + v2)

and AB.w)(0) | (X.A) X (I]1) = 71SM(0,u)(01)
ABW)0) | (X,A) X (Indz) = 72SA(0,u)(v2)

Therefore, as in the proof of lemma 8.2.3,
TSA(0,u)(v1 + v2) = TSA(B,u)(v1) + TSA(O,u)(v2)
Since 7 is an isomorphism, this gives the result. =

Let B be a space of type (7,n) and let p: E — B be a principal fibration
of type (G,q) induced by a map #: B— B'. Let & = §* (/) € H(B,by; G)
correspond to a cohomology operation 8 of type (n,q; 7,G) (that is, 6(:) = ).
Given a CW complex X, a map f: X — B can be lifted to E if and only if
6(f*(¢)) = 0. For any element u € H*(X;n) such that §(u) = 0 it follows that
there are liftings f: X — E such that (p ° f)*(¢) = u. We shall determine how
many homotopy classes of such liftings there are.

9 v1emma Let fo, f1: X — E be maps such that p ° fo = p° f1 (that is,

fo and fy are liftings of the same map X — B). Then fo ~ f1 if and only if
there is d € H"1(X;7) such that d( fo,f1) = SA(G,u)(d), where u = (p ° fo)* (1).
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PROOF Let Fy: i’ — p be the map pair consisting of
XxIiLHE

‘| 1
XxI-2B
where F§(x,0) = fo(x), Fy'(x,1) = fi(x), and Fo(x,t) = pfo(x). Then d( fo.f1) =
(—1)ar~(c(Fy)). It is clear that fo ~ fi if and only if there is a homotopy
Fi: X X I — B from p ° fo to p © f1 such that for the corresponding map pair
Fy: i — p we have ¢(F;) = 0. Let G: (X X I) X I U (X X I) X I - Bbe
defined by G'(x,0,t) = G'(x,1,t) = pfo(x), G'(x,t,0) = Fo(x,t) and G'(x,1,1) =
Fi(x,t). By corollary 7,
AG' *(6') = c(Fy) — c(Fy)
Thus fo ~ f1 if and only if there is a map Fi: X X [ — B such that for the
corresponding map G’ we have
d( fo.fr) = (= 1)ar HAG™ ()
It is easily verified that G'*(i) = j¥h* 1AG *() + k*u’, where
u € HYX x I, 7) is the image of u = (p ° fo)*(:) under the projection
X X I - X. By definition,
AG * () = AG' *60(:) = AIG'* (1) = A(0,u)(AG * (1))
Since Fj, Fi: X X I — B are two liftings of the map pair
XxI—B

Lo

XxI— bo
it follows from corollary 5 that d(Fj,F;) = —AG'*(1), and by theorem 8.2.4,
given d € H"1(X;m), there is a homotopy Fi: X X I — Bfromp ° fotop -~ fi
such that AG'*@) = (—1)97(d). Combining all of these, we see that fo = fi
if and only if there is d € H*"1(X;7) such that

d( fo.f1) = T71A0.u)1(d) = SA(B,u)(d) =
We summarize these results in the following classification theorem.
10 tHEOREM Let p: E — B be a principal fibration of type (G,q) over a
space B of type (m,n) induced by a map 8: B — B’ such that 6% () = 6(v).
Given a CW complex X, there is a map : [X;E] — H"(X;7) defined by
Yl = (p° f)*(). Then im ¢ = {u € HY(X;7)| 8(u) = 0}, and for every
u € im ¢ the set Y~ 1(u) is in one-to-one correspondence with
HY(X;G)/SA@,u)HP=Y(X; )

prOOF We have already seen that im ¢ is as described in the theorem.
Given u € im ¥, let fo: X — E be such that J[fy] = u. Given any map
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f1: X — E such that Y[ fi] = u, there is a map f1: X — E homotopic to f;
such that p ° f1 = p ° fy (by the homotopy lifting property of p). To such a
map f1 we associate the element d( fo.f1) € H"1(X;G). In this way the set of
maps X — E which are liftings of p ° fy is mapped into H"(X;G), and by
theorem 8.2.4, this map is surjective.

Two maps fi, fo: X — E such that pefi=pefo=mpefare homotopic
by lemma 9 if and only if d( f1.f2) € SA(0,u)H""1(X;7). By lemma 8.2.3,
d(f(), 2) = d(fo, 1) -+ d(fl, 2), and so f1 zfg if and only if d(fo, 1) and
d( fo.f2) belong to the same coset of SA(6,u)H"~1(X;7) in He1(X;G). Hence
the function which assigns the coset d( fo.f1) + SA(6,u)H"1(X;7) to a map
fir X — Ewithp e f; = p ° f induces a bijection from y~1(u) to

HeY(X;G)/SA,u)H1(X; )

We now apply this to the complex projective space P,,(C) for m > 1.
There is a map P,(C) — P.(C) and P.(C) is a space of type (Z,2), by
example 8.1.3. Furthermore, if ¢ is a characteristic element for P,(C) and B’
is a space of type (Z, 2m + 2), there is a map : P,(C) — B’ such that
0* () = ()™*1. For the principal fibration p: E — P, (C) induced by 8 there is
a map P,(C) — E which is a (2m + 2)-equivalence. In this case the operation
6 is the (m + 1)st-power operation, and therefore

SAB,u)(v) = TIA[* h* ~1(r(v)) + k* w1
= r1A[(m + Dk*(w)m O j¥h* 1 r(0))] = (m + Dum w v

because 7(v) w 7(v) = 0. This gives the following application of theorem 10.

11 tHEOREM Let ¢ € H2(P,(C);Z) be 2-characteristic for Pp(C) and let X
be a CW complex. Define ¢: [X;Pn(C)] — H2(X;Z) by J[f] = f*(). If
dim X < 2m + 2, thenim ¢ = {u € HA(X;Z) | um*1 = 0}. Ifdim X < 2m + 1,
then { is surjective, and for a given u € H2(X;Z), y~\(u) is in one-to-one
correspondence with H**1(X;Z)/[(m + lum™ v HY(X;Z)]. =

5 THE SUSPENSION MAP

One of the most useful tools for the study of the homotopy groups of spaces
is the suspension homomorphism from 7y(X) to 7, 1(SX). Iteration of this
homomorphism yields a sequence of groups and homomorphisms

Tg(X) = 7g41(SX) = 7g12(S2X) — -

This sequence has the stability property that from some point on, all the
homomorphisms are isomorphisms. For a fixed X and ¢, therefore, there are
only a finite number of different groups in the above sequence.

In this section we shall study the suspension map in some detail and
establish the stability property. This will enable us to compute ,,1(S?) for
all n. Knowledge of these groups, combined with obstruction theory, will lead
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to the Steenrod classification theorem, which closes the section.!

We consider the category of pointed spaces and maps. There is a
functorial suspension map S: [X;Y ] — [SX;SY] such that S{ f] = [Sf]. The
exponential correspondence defines a natural isomorphism

[SX;SY] =~ [X;Q8Y]

and we define S: [X;Y] — [X;QSY] to be the functorial map which is the
composite of S with this isomorphism. The following result shows that § is
induced by a map Y — QSY.

1 LEmMa Let p: Y — QSY be the map defined by p(y)(t) = [y.t] fory € Y
and t € I. Then for any space X

S = pu [X;Y] — [X;QSY]

prRoOF The exponential correspondence takes the identity map SY C SY to
the map p: Y —> QSY. Because of functorial properties of the exponential
correspondence, it takes the composite

sx 3, sy c sy
to the composite
XLy 2 QSYy =

Thus, to study the suspension map S, we study the map p. To do
this we use the fibration PSY — SY, which has fiber QSY. With this
in mind, let us investigate homology properties of fibrations over SY.
We assume that yo € ¥ is a nondegenerate base point. We define
CY={lytl€eSY|0<t<%}and C.Y = {[y.t] € SY| % <t < 1}. Then
SY = C_Y U C,Y, and there is a homeomorphism ¥ = C_Y N C,Y (sending
y to [y,%2]) by means of which we identify ¥ with C_.Y N C,Y. Let S'Y be
the unreduced suspension defined to be the quotient space of Y X I in which
Y X 0 is collapsed to one point and Y X 1 is collapsed to another point and
let C_Y,CLY be analogous subspaces of §'Y (so C_Y N C,Y = Y). The map
collapsing S’y in S'Y is a collapsing map k: S'Y — SY such that k(C"Y) = C_Y
and k(C,Y) = C,Y.

2 1emma If yo is a nondegenerate base point, the collapsing map
k: §'Y — SY defines a homotopy equivalence from any pair consisting of the
spaces 5'Y, C_Y, CLY, and Y to the corresponding pair consisting of SY, C_Y,
C.Y, and Y.

PROOF Because y, is a nondegenerate base point of 7, it follows, as in the
proof of lemma 7.3.2c, that Y X I U yo X I C Y X I is a cofibration. Let
[y,t]" € 'Y denote the point of S'Y determined by (y,t) € Y X I under the
quotient map k': Y X I — S'Y. Let H: (Y X I U yo X I) X I — S'Y be the
homotopy defined by H'(y,0,¢8) = [yo,t/2], H'(y,1.t) = [yo, (2 — £)/2], and
H'(yo,t',t) = [yo, (1 — t)t' + t/2]". Then H’ can be extended to a homotopy

1 The first detailed study of the suspension map appears in H. Freudenthal, Uber die Klassen
der Sphérenabbildungen I, Compositio Mathematica, vol. 5, pp. 299-314, 1937.
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H”:Y X I X I — S'Y such that H”(y.,t,0) = k'(y,t). Since H"(y,0,t) = H"(y',0,t)
and H"(y,1,t) = H'(y',L,t) for all y, ¢’ € Y, it follows that there is a
homotopy H: §'Y X I — S'Y such that H([y,t]’, t') = H"(y,t,t’). Then His a
homotopy from the identity map of S'Y to a map which collapses Sy, to a
single point such that H(S'yo X I) C S'yo. Since H(B x I) C Bif B = C.Y,
C.Y, or Y, the result follows from lemma 7.1.5. =

3 comroLLarY If Y is a path-connected space with nondegenerate base
point, then SY is simply connected.

PROOF By lemma 2, §'Y and SY have the same homotopy type, so it suffices
to prove that §'Y is simply connected. It is clearly path connected, being the
quotient of the path-connected space Y X L

Let U_ = {[y,t] € Y|t < 1} and U, = {[y,t]’ € Y| 0 < t}. Then
U_. and U, are each open and contractible subsets of S'Y. If w is any closed
path in S"Y at [yo,%]’, there is a partition of I, say, 0 = to <t; < -+ <8, = 1,
such that for each 1 <i < n either w([ti_1,t;]) C U_ or w([t;_1.t]) C U,.
Furthermore, it can be assumed that w(¢;) € U_ N U, forall 0 < i < n (if
some w(;) is not in U_ M U,, ¢; can be omitted from the partition to obtain
another partition of I satisfying the original hypothesis, and iteration of this
procedure will lead to a partition having the additional property demanded).
Since U_ N U, is homeomorphic to Y X R, it is path connected. For each i
let w; be a pathin U_ N U, from w(t;_1) to w(;) and let &’ be the closed path at
[y0,1/2]/ defined by w’(t) = wi(<t — tiv1>/<ti — ti—l)) for ti1 S t S t;.
Because U_ and U, are each simply connected, w | [t;_1,t] is homotopic to
w’ | [t;—1,8] relative to {t;-1,t;}. Therefore w ~ ' rel I. Since ' is a closed
path in U,, it is null homotopic. Therefore w is null homotopic and S’Y is
simply connected. =

4 coroLLARY Let Y have a nondegenerate base point and let p: E — SY
be a fibration. Then {p~1(C_Y ),p~4C,Y)} is an excisive couple in E.

PROOF Let p”: E' — §'Y be the fibration induced from p by k: 'Y — SY and
let k: E' — E be the associated map. It follows from lemma 2 that k induces
vertical isomorphisms in the commutative diagram

Hy (p'~(CLY),p" YY) — Hy (E',p'~(CLY))

Hy (p71(C Y )ip71(Y)) — Hy(Ep (C.Y))

Since C,Y is a strong deformation retract of U, (with U, as defined in
corollary 3) and Y is a strong deformation retract of U, N C.Y, it follows that
p " YCLY) and p’~Y(Y) are strong deformation retracts of p’~}(U,) and
p' "YU, N CLY), respectively. This implies that {p'~{C_Y ),p’1(C,Y)} is an
excisive couple. From the commutative diagram above, the result follows. =

Because C.Y and C_Y are contractible relative to yo, it follows, as in
Sec. 2.8, that for any fibration p: E — SY with fiber F = p~1(yo) there are
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fiber homotopy equivalences f_: C_Y X F — p~(C_Y) and g,: p~{C.Y) —
C.Y X F such that f_|yo X F is homotopic to the map (yo,2) — z and
g+ | F is homotopic to the map z-> (yo,2). The corresponding clutching
function p: Y X F — F is defined by the equation

gf-(y2) = (y, wy2) yeY.z€F
Then p| yo X F is homotopic to the map (yo,2) — z.

5 tHEOREM Let p: E — SY be a fibration with F = p~'(yo), where yo is
a nondegenerate base point of Y. If u: Y X F — F is a clutching function
for p, there are exact sequences (any coefficient module)

- — Hy(E) — Hy(C_Y X F, Y X F) 225 H,_ 1(F) % H, ((E) — - ..

. —s HYE) S HoF) 255 Het\(C_Y X F, Y X F) — H'"(E) — - - -
proOF Consider the exact homology sequence of (E,F)
<> Hy(F) * HyE) — Hy(EF) 5 Hyo(F) — -

Using homotopy properties and corollary 4, there are isomorphisms induced
by inclusion maps

Hy(EF) = HyEp~C,Y)) < Hy(p™(C_Y),p(Y))
There is also a homotopy equivalence
f(CYXFE Y XF)— (p7{(C.Y), p(Y))
and a commutative diagram
HyEF) — HyEp{(C,Y)) < Hp {(C_Y),p 1Y) <2 Hy(C_Y,Y) X F)
gl g 1 |

Hya(F) 25 Hoa(p iCY)) & Hya(p (Y )20 Hya(Y X B)

There is also a homotopy equivalence g.: p~(C.Y) — C,Y X F and
isomorphisms

Ho-a(p~H(C1Y)) 5 Hoya(CLY X F) 2 Hoa(F)

where the right-hand homomorphism is induced by projection to the second

factor. Because g, | F is homotopic to the map z — (yo,2), the above composite
equals j, ~1. By definition, p is the composite
Y x F 25 oy ) € py(CLY) €5 C,Y X F—> F
Therefore there is a commutative diagram
H{EF) = H{(C_Y,Y) x F)

al la

Hy-(F) &~ Hyy(YX F)
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The desired exact sequence for homology follows on replacingH,(E,F) by
Hy((C_Y,Y) X F) and 0 by p, 2 in the homology sequence of (E,F). A similar
argument establishes the exactness of the cohomology sequence. =

Specializing to the case where Y = $»~1, by lemma 1.6.6, S(S*~1) is
homeomorphic to §?, and we obtain the following exact Wang sequence of a
fibration over Sn.

6  coroLLarY Let p: E — S" be a fibration with fiber F. There are exact
sequences

= Hy(F) % HY(E) = Hyon(F) = Hga(F) — -

- — H4(E) 5 Ho(F) &> Hon+Y(F) — Hit1(E) — - ..
If the second sequence has coefficients in a commutative ring with a unit,
then

Blu v v) = O(u) v v + (—1)r"Ddeguy O G(v)

PROOF Letting Y = S"~1 in theorem 5, we have (C_Y,Y) homeomorphic to
(Er,Sn~1). Therefore

Ho((C-Y,Y) X F) = Hy((E"S"") X F) = Hy_n(F)

and the exact sequences result from the exact sequences of theorem 5 on
replacing Hy(C_Y X F, Y X F) and HYC_.Y X F, Y X F) by H,_,(F) and
Han(F), respectively. The additional fact concerning  results from the obser-
vation that for the map p*: HY(F) — Ha(Sn~1 X F) the definitions are such that

pEu) =1 X u + s* X 6(u)
where s* € H"~1(S»71) is a suitable generator. Then, since s*  s¥* = 0,

1 X (uwv) +s* X 0uwv)

W (o o)

(I Xu+s* XO0uwlwllxo+s* xv)]

=1 X (uwo)+s* X[0u) wov+ (—1mDdesuy o f(v)]

This implies the multiplicative property of §. =
We now specialize to the path fibration p: PSY — SY with fiber QSY.
In this case there is the following simple expression for a clutching function.

7 v1EmMA Lets_: C.Y - p {C_Y)ands,: C,Y — p~{C.Y) be sections
of the fibration p: PSY — SY such that s_(yo) and s,(yo) are both null
homotopic loops. Then the map p: Y X QSY — QSY defined by

py,w) = (@ * 5 (y)) * s4(y)?

is a clutching function for p.

PROOF Such sections exist because C_Y and C,Y are contractible relative
to yo. We define fiber-preserving maps
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i CY X QSY — p1(C_Y)  g_:p{C_Y)— C_Y X QSY
£ CLY X QSY — pY(C,Y) g p~NC,Y)— C,Y x QSY

by f-(z.) = @ % 5_(z) and g_(6) = (p(@), & * (5_p(e)) 1) and f,(5.6) = @ * 5,(2)
and gi(w) = (p(w), w * (syp(w))™1), respectively. It is easy to verify that
g_ ° f_ is fiber homotopic to the identity map of C_Y X QSY and f_ > g_ is
fiber homotopic to the identity map of p~1(C_Y). Therefore f_ is a fiber
homotopy equivalence. Similarly, g, is a fiber homotopy equivalence. Further-
more, f_(yo,w) = w * s_(yo) is homotopic to the map (yo,w) - w because
s_(yo) is null homotopic. Similarly, for w € QSY, g (w) = (yo, @ * s,(yo)™1) is
homotopic to the map w — (yo,w). Therefore the composite

Y % QSY L pm1(Y) £5 ¥ x QSY — QSY
is a clutching function for p. This composite is the map

(y0) = (@ * s (y)) * s (y)" =
Let s_ and s, be sections as in lemma 7 and let p": ¥ — §2SY be defined

by u'(y) = s_(y) * s.(y)"1. p' is called a characteristic map for the fibration
p: PSY — SY.

8 coroLLarY Let p': Y — QSY be a characteristic map for the fibration
p: PSY — SY. The map Y X QSY — QSY sending (y,w) to w * p'(y) is homo-
topic to a clutching function for p.

prooF This follows from lemma 7, because the map

() = (@ * s-(y)) * s4(y) !
is clearly homotopic to the map (y,w) — w * (s_(y) * s.(y)™) = w * p'(y). =

The following theorem is the main part of the proof of the suspension
theorem.

9 TtHEOREM Let Y be n-connected for some n > 0 and let yo be a non-
degenerate base point of Y. If w1 Y — QSY is a characteristic map for the
fibration p: PSY — SY, then p’ induces an isomorphism

pg s Hy(Y) = H(QSY) g<2n+1

PROOF By corollary 3, SY is simply connected. By corollary 4, {C_Y,C.Y }
is an excisive couple, and from the exactness of the reduced Mayer-Vietoris
sequence, Hy(SY) =~ H, 1(Y). Combining these with the absolute Hurewicz
isomorphism theorem, SY'is (n + 1)-connected. Therefore 2SY is n-connected.
Because PSY is contractible, it follows from the version of theorem 5, using
reduced modules, that there is an isomorphism

1y 80 Hy(C_Y,Y) X QSY) = H,_1(QSY)

If wo is the constant loop, then because 2SY is n-connected and (C_Y,Y)
is (n + 1)-connected, it follows from the Kiinneth theorem that the inclusion
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map (C_Y,Y) X wo C (C_Y,Y) X £SY induces an isomorphism
H((C_Y,Y) X wo) = Hg((C_Y,Y) X QSY) g<2n + 2

Let p: Y X QSY — QSY be a clutching function which is homotopic to
the map (y,w) — w * p'(y) (such a p exists, by corollary 8). Since u(y,wo) is
homotopic to the map y — p/(y), there is a commutative diagram

Hy(C_Y,Y) = Hy((C_Y,Y) X wo) — Hy((C_Y,Y) X QSY)

! l 0|
H,1(Y) = Hea(Y X wo) —  Hey(Y X QSY)
RN oy

H, 1(QSY)
The result follows from the commutativity of this diagram. =

10 coroLLARY Let Y have a nondegenerate base point. If Y is n-connected
forn > 0, the map p: Y — QSY induces an isomorphism

Py :Hy(Y ) = Hy(QSY) g<2n+1

prROOF Lets : C_.Y — p~}(C_Y)and s;: C.Y — p~}{C.Y) be the sections
defined by s_[y,t](t) = [y,t¢'] and s,[y,t](#) = [y, 1 — ' + #']. The corre-
sponding characteristic map is equal to the map p: Y — QSY. The result
follows from theorem 9. =

We are now ready for the following suspension theorem.!

11 tHEOREM Let Y be n-connected for n > 1 with a nondegenerate
base point and let X be a pointed CW complex. Then the suspension map

S: [X;Y] — [SX;SY]
is surjective if dim X < 2n + 1 and bijective if dim X < 2n.

PROOF Because Y and QSY are simply connected, it follows from corollary 10
and the Whitehead theorem that p is a (2n + 1)-equivalence. The result
follows from corollary 7.6.23 and lemma 1. =

Let Y be a space with a nondegenerate base point. Then SY also has a
nondegenerate base point and is path connected, S?Y is simply connected,
and SmY is (m — 1)-connected. If X is a CW complex, so is S™X, and
dim ($mX) = m + dim X. Hence, if X is finite dimensional and m > 2 + dim X,
it follows from theorem 11 that S: [SmX; SmY | = [Sm*1X; Sm*1Y |. Therefore,
for any finite-dimensional CW complex X the sequence

[X;Y]S [SX;8Y ]S ... 5 [Smx;smy ] Ss ...
1 For a general relative form of this theorem see E. Spanier and J. H. C. Whitehead, The theory

of carriers and S-theory, in “Algebraic Geometry and Topology” (a symposium in honor of
S. Lefschetz), Princeton University Press, Princeton, N.J., 1957, pp. 330-360.
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consists of isomorphisms from some point on. Taking X = S**% and Y = S
and recalling that the suspension of a sphere is a sphere, we see that there is
a sequence

T k(S™) 5 Tnak+1(SP1) 55

consisting of isomorphisms from some point on. The direct limit of this
sequence is called the k-stem. It follows from theorem 11 that the k-stem is
isomorphic to 7oz, 2(S**2). In particular, the O-stem is infinite cyclic. The fol-
lowing result determines the 1-stem.

12 THEOREM m4(S3) = Z,.

PROOF Let uo € HO(QS3) be the unit integral class and define generators
u; € H%(QS3), by induction on i from the exactness of the Wang sequence in
corollary 6 for the fibration PS3 — $3, by the equation

0(u¢+1) = U; i Z 0

Because 6 is a derivation, 8(u; v u1) = 2uy, whence u; v uy = 2us. We
know w2(2S3) =~ m3(S3) is infinite cyclic. It follows that £S3 can be
imbedded in a space X of type (Z,2) such that the inclusion map 2S3 C X
induces an isomorphism 72(£283) = 75(X). Since P.,(C) is also a space of type
(Z,2), it follows that H* (X) = H* (P (C)) =~ lim. {H*(P;(C))} is a polynomial
algebra with a single generator v € H2(X), and v can be chosen so that
0| Q83 = uy.

An easy computation using the exact cohomology sequence of (X,{253)
establishes that He(X,QS3) = 0 for ¢ <5 and H5(X,QS3) = Z,. By the
universal-coeflicient formula, H,(X,§253) = 0 for g <{ 4 and Hy(X,Q83) = Z,.
By the relative Hurewicz isomorphism theorem, m4(X,{2S%) = Zy. Because
73(X) = 0 = 7m4(X), we have 74(X,Q58) £ 73(QS?) = 74(53). ®

The (n — 2)-fold suspension of a generator of 73(S2) is a generator of
mn41(S") (because S: m3(S%) — 74(S3) is an epimorphism, by theorem 11).
Attaching a cell to S» by this map must, therefore, kill m,,1(S"). The resulting
CW complex has the same homotopy type as the (n — 2)-fold suspension of
the complex projective plane P(C). Therefore we have proved the following
result.

13 coroLLARY 7, 1(SP2(Py(C))) = 0 n>2 =

We want to classify maps of an (n + 1)-complex into S». For n = 2 this
is given by the case m = 1 of theorem 8.4.11. By using the standard
Postnikov factorization of S», we are reduced to classifying maps of an
(n + 1)-complex into E, where p: E — B is a principal fibration of type
(Zo, n + 2), with base space B a space of type (Z,n). This fibration determines
a cohomology operation 8, of type (n, n + 2; Z,Z,).

14 1EmmMA  For n > 2 the cohomology operation 8, is Sq2 ° p,, where
pg: HW(XSZ) — HYX;Zp) is induced by the coefficient homomorphism
wZ — Zy.
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PROOF §7 C 87 2(P,(C)) is not a retract, by theorem 12 and corollary 13.
Therefore 6,: H"(S"2(Py(C));Z) — H"2(S"72(P5(C));Z2) is nontrivial (if 8,
were trivial, there would be a map f: S*2(P;(C)) — S* such that

£%. Hn(SMZ) =~ Hr(Sv2(P5(C));Z)

is inverse to the restriction map H™S" 2(Py(C));Z) = HYS%Z), and such a
map f would be homotopic to a weak retraction). Since Sqg2 ° p, is also non-
trivial, it follows that 8, = Sq2 ° u, in the space S7~2(P,(C)).

The rest of the argument follows by showing that S*~2(P,(C)) is universal
for 8, and Sq? ° py. Let X be any CW complex of dimension < n + 2 and let
u € HX;Z). Because 7, 1(5" 2(P,(C))) = 0, there is a map f: X — S*~2(Py(C))
such that f*v = u, where v is a generator of H*(S*~2(P5(C))). By the natural-
ity of 0, and Sq2 ° p, it follows that

On(u) = Onf*0 = f* 00 = f*SqPusv = SqPuy (u)

Since this is true for every CW complex of dimension < n + 2 and 6, and
Sq? ° py are operations of type (n, n + 2; Z,Z,), it is true for every CW
complex. =

Combining lemma 14 with theorem 8.4.10 yields the following Steenrod
classification theorem.!

15 tHEOREM Let s* ¢ HYS%Z) be a generator, where n > 2, and let X
be a CW complex. Then the map ¢: [X;S"] — H*X;Z) has image equal to
{u € HMX;Z) | Sq?uy (u) = 0} if dim X <n + 2, and if dim X <n + 1,
Y~ (u) is in one-to-one correspondence with H"'1(X;Z,)/Sq?u, H1(X;Z). =

EXERCISES

A SPACES OF TYPE (m,n) n
1 For p an integer let L,(p) be the generalized lens space Ly(p) = L(p, 1, . . . ,1).
Show that Ly(p) C Lyn,1(p) and that L(p) = U, L,(p) topologized with the topology
coherent with {Ly(p)} is a space of type (Z,,1).
2 If Xis a CW complex of type (m,n) for n > 1 and Y is a CW complex, prove that

mXvY)=m(Y)® @ m

e (Y}

where 7, = 7 for each A € 7((Y).
3 Given a sequence of groups {7,}4.1, with 7, abelian for g > 1, and given an action
of 7y as a group of operators on 7, for g > 1, prove that there is a space Y which realizes
this sequence (that is, 7(Y) = 7, and 71(Y ) acting on 7,(Y ) corresponds to the action
of 71 on 7).

1 See N. E. Steenrod, Products of cocycles and extensions of mappings, Annals of Mathematics,
vol. 48, pp. 290-320, 1947.
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B ExAcTt SEQUENCES CONTAINING g4

Let g: (Y,B) - (Y',B’) be a base-point-preserving map and let g = g|Y: Y — Y’ and
g'=¢g|B:B—B.

1 Prove that E;- is a subspace of E, and py- = py | Eg-.

2 Define p: (Ey,E;) — (Y,B) so that p | E; = py and j: (RY,QB’) — (E,,E,) so that
f(w) = (yo,w). Prove that there is an exact sequence

(QY,2B) %5 (QY,QB) %> (EgEy) B> (Y,B) £ (Y',B)
3 Prove that there is an exact sequence
-2, Qn(E, Ep) £2 QyY,B) L& Qv Y ,B) — .- £ (Y,B)

4  Define a map (Y’ X Ey, QB X E;) — (Ey,Ey) sending @ X (yo,w’) to (yo, w * «')
and use this to define an action a T b of [X,A; QY",QB'] on the left on [X,A; Ey.E,].
Prove that pu(b1) = pa(bs) for by, by € [X,A; Eg,Ey] if and only if there is
a € [X,A; QY ,QB] such that by = a T ba.

3 Prove that jy(ai) = ju(az) for ay, as € [X,A; QY ,QB'] if and only if there is
¢ € [X,A; QY,QB] such that a; = ax(£2g)4(c).

C EXAMPLES

1 Find an example of an n-dimensional polyhedron X, with n > 1, and a map
f: X — Sn such that f,: H, (X) — H, (S is trivial but f is not homotopic to a constant
map.

2 Let X be an n-dimensional polyhedron. Prove that f, g: X — S are homotopic if and
only if fx = guHa(X;G) = Ho(S%G) for G = Z, with p a prime, and for G= R.

3 Compute the cohomotopy group #2m~1(P,(C)) for m > 2.

4 Let (Y,B) be a pair which is (n — I)-connected for n > 2, with a simple inclusion
map B C Y, and let « € H*(Y,B; 7) be n-characteristic for (Y,B). If (X,A) is a relative CW
complex and f: (X,A) — (Y,B), prove that f*(:) ¢ H*X,A; =) is the first obstruction to
deforming f relative to A to a map from X to B.

D SUSPENSION

1 Let X be an (n — 1)-connected CW complex of dimension < 2n — 1. Prove that
there is a CW complex Y such that SY has the same homotopy type as X. [Hint: Show
that X has the same homotopy type as a CW complex X', with (X')»"1 a single point.
Construct Y inductively by desuspending the attaching maps of the cells of X'.]

2 Let A and B be closed subsets of a space X such that X = A U B. Assume that
f. g X — Y are such that f{A) = yo = g(B) and define h: X — Ysothat h|A =g|A
and h | B = f| B. Prove that, in [SX;SY],

[Sf)[Sg] = [Sh]
3 Let X and Y be path-connected pointed CW complexes. Prove that a map f: X — Y
has the property that Skf: S¥X — S¥Y is a homotopy equivalence for some k > 0 if and
only if Sf: SX — SY is a homotopy equivalence. [Hint: Show that either condition is
equivalent to the condition f,: Hy (X) = H, (Y).]
4 Let X and Y be path-connected pointed CW complexes and let p1: X X ¥ — X and
p2: X X Y — Y be the projections and k: X X Y- X # Y = X X Y/X Vv Y the collaps-
ing map. Regard all three as maps into Xv Yv (X # Y) and prove that
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((Sp1) * (Sp2)) * (Sk): SX X Y)— SXvYVX #Y)
is a homotopy equivalence.

3 Show that there exist CW complexes with different homotopy type whose suspensions
have the same homotopy type.

E THE SUSPENSION CATEGORY
Let {X,A; Y,B} = lim._, [S¥X,SkA; SkY,S%B], and for g an integer (positive or negative) let
{X,A; Y,B}; = lim_, [Sk*+aX,Sk+eA; SkY,SEB]. If a: Sk+9(X,A) — S¥(Y,B), then {a} will
denote the corresponding element of {X,A; Y,B},.
1 Prove that there is a pairing

{Y,B; Z,C}, ® {X,A; Y,B}q — {X,A; Z,C}psq
sending {a} ® {8} to {« > B}, where

Sp+atk(X,A) £ Sptk(Y,B) %> SK(Z,C)

2 If A is closed in X and (X,A) has a nondegenerate base point, prove that
{(C_X,C_A), (C,X,C,A)} is an excisive couple of subsets. Let S: Hy(X,A) =~ H,.1(SX,5A)
and S: H(X,A) =~ He*1(SX,SA) be the isomorphisms of the corresponding relative
Mayer-Vietoris sequences.

3 Prove that there are pairings

(X,A; Y,B), ® HyX,A) — Hp.o(Y,B)

{X,A; Y,B}, ® H'(Y,B) — H?(X,A)
sending {a} ® z to S7*(ay (S¥*7z)) and {a} ® u to S7E7p(a*(Sku)) for z € HyX,A),
u € H7(Y,B), and a: S¥*P(X,A) — S¥(Y,B).
4 If (X,A) is a pointed pair, with A C X a cofibration, and Y is a pointed space, prove
that there is an exact sequence

S XY Yo (AY Yy (X/AY Yo > (Y Yoo -
5 Let X be a pointed space and (Y,B) a pointed pair, with B C Y a cofibration.
If f: X — Y is such that the composite X - Y % Y/B is null homotopic, prove that Sf
is homotopic to the composite SX 15> SB C SY for some f. Deduce the existence of an
exact sequence
oo > {XsB}g— {(X;Y }g— {X;Y/BYg — {X;B}g1— - -

F DUALITY IN THE SUSPENSION CATEGORY!
In this group of exercises all spaces are assumed to be finite CW complexes with base

points. An n-duality is an element u € {X* # X; S°}_, such that the map sending
{a) € {SX*}, =~ {SuX*} to u -~ ({a} # {1x)) € {S* # X; 8%} _» = {X;50)4—s is an
isomorphism

Dy {S%X*}, = {X;8%} ¢
and the map sending {8} € {§%X}, = {SX}tou° ({1x*} # {B}) € {(X* # 548} » =

{X*,80}4_, is an isomorphism

1 See E. Spanier, Function spaces and duality, Annals of Mathematics, vol. 70, pp. 338-378,
1959, for a different development of this topic. The one given in the text is based on a sugges-
tion of P. Freyd and has also been considered by D. Husemoller.
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Dr: {S9X} g = {X*;50}_n
1 If f: S» # S? — Sptais a homeomorphism, prove that { f} € {57 # 59, S0}_,_,isa
(p + g)-duality.
2 Ifuc¢ {X* # X; S9)_, is an n-duality, prove that the element u’ € {X # X*; 89} _,
corresponding to 4 under the homeomorphism X # X* — X* # X is also an n-duality.

3 If ue {X* #X; S, is an n-duality, prove that for any Y and Z there are
isomorphisms

Dy (Y Z # X*) o= (Y # X; Z}gum

Du{Y; X # ZYg={(X* #Y; Z}gn

such that D,{a} = ({12} # u) ° ({a} # {1x}) for {a} € {Y; Z # X*}, and D*{B} =
(u # {1z)) ° ({1x*} # {B}) for {B} € {Y; X # Z}q (Hint: If Y and Z are spheres, this
is true by definition of n-duality. For arbitrary Y and Z use induction on the number of
cells and the five lemma.)

Given n-dualities u € {X* # X; $°}_,and v € {Y* # Y; S°)_,, define an isomorphism

D(u): {X;Y }o= {Y*;X*},
so that the following diagram is commutative:

{X;Y}q M {Y*?X*}q
e 7.
{Y*#X; S04 n
4 Prove that D(v',u") = (D(u,0))"1: {Y*;X*}; = {X;Y },.
3 If uc{X* #X;8) , ve{Y* #Y;8)_,, and w€ {Z* # Z; S°}_, are
n-dualities and {a} € {X;Y }, and {B} € {Y;Z},, prove that, in {Z*;X*},,,
D(uw)({B} ° {}) = (D(u,v){a}) ° (D(v,w){B})

Assume that f: X* # X —> S* and g Y* # Y > S* are such that {f} and {g} are
n-dualities and let a: X — Y and 8: Y* — X* be maps such that

f°(B#lx)§g°<1y*#a): Y* #X——) Ng
[which implies D({ f},{g}){a} = {B}]. Let C, and C; be the mapping cones of « and 8,
respectively, and consider the coexact sequences

X%y C, 4 x5 Sy
Y* £ x* 5 ¢, B gy 5B, gx*

6 Prove that there is a map h: Cp; # C, — S**1 such that the following squares are
homotopy commutative:

X* 4 C, LEE X* 4 SX o S(X* # X) Cp # Y “ho coza,
i’#ll lsf k’#ll ih
Cy # C, £ Sn+1 SY* # Y > S(Y* # Y) £, gn1

Deduce that {h} € {Cy # Cy S0} _p_y is an (n + 1)-duality.

7 For any X there is an integer n for which there exists a space X* and an n-duality
u € {X* # X; S°)_,. (Hint: Prove this by induction on the number of cells of X, using
exercises 1 and 6 above.)
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