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In this way, 7TI(A,xo) acts as a group of operators on the left on 7Tn(X,A,xo), 
and if A is path connected and xo, Xl E A, then 7Tn(X,A,xo) and 7Tn(X,A,XI) are 
isorrwrphic by an isomorphism determined up to the action of 7TI(A,xo). • 

If w is a path in A, it follows from lemma 1a that there is a commutative 
square for n > 1, 

7Tn(X,A,w(1)) ~ 7Tn_I(A,w(1)) 

h["ll lh["l 

7Tn(X,A,w(O)) ~ 7Tn_I(A,w(O)) 

Thus there is also a covariant functor from the fundamental groupoid of A to 
the category of exact sequences which assigns to X E A the homotopy sequence 
of (X,A,x). 

A pair (X,A) with A path connected is said to be n-simple (for n 2: 1) if 
7TI(A,xo) acts trivially on 7Tn(X,A,xo) for some (and hence all) base points Xo E A. 
If A is simply connected, (X,A) is n-simple for every n 2: 1. 

II THEOREM Let (X,A) be a pair of H spaces with A path connected. Then 
(X,A) is n-simple for all n 2: 1. 

PROOF This is immediate from theorem 5. • 

If (X,A) is n-simple and xo, Xl E A, then 7Tn(X,A,xo) and 7Tn(X,A,XI) 
are canonically isomorphic. Therefore any map a: (En,Sn-l) ---7 (X,A) deter­
mines a unique element of 7Tn(X,A,xo) (whether or not a maps the base point 
po E Sn-l to XO), and 7Tn(X,A,xo) is in one-to-one correspondence with the free 
homotopy classes [En,sn-l; X,A]. If (X,A) is n-simple, we shall frequently omit 
the base point and write 7Tn(X,A). 

The action of 7TI(A,xo) on 7T2(X,A,xo) is closely related to conjugation, as 
shown by the next result. 

12 THEOREM If a, b E 7T2(X,A,xo), then 

aba-1 = haa(b) 

PROOF Let X' = P(X,xo) and let p: X' ---7 X be the path fibration. Let 
A' = p-I(A) and let Xo E A' be the constant path at Xo. By theorem 7.2.8, 
there is an isomorphism 

p#: 7T2(X',A',xo) :::::: 7T2(X,A,xo) 

Let a' = p# -l(a) and b' = p# -l(b) and observe that, by lemma Ib, 

haa(b) = p~haa,(b')) 
Hence it suffices to prove that a'b'a'-l = haa,(b'). Because X' is contractible, 
it follows from the exactness of the homotopy sequence of (X' ,A',xQ) that 

0: 7T2(X',A',xQ) :::::: 7TI(A',xo) 
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So to complete the proof we need only prove that 

o(a'b'a'-l) = o(hca,(b')) 

The left-hand side equals (oa')(ob')(oa')-l, and because a commutes with hi'a', 
the right-hand side equals hua,(ob'). The result now follows from the fact that 
the action of 7Tl(A',xb) on itself given by h is the same as conjugation. -

This again implies that '7Tz(X,xo) ;::::: '7Tz(X, {xo },xo) is abelian. Together with 
the exactness of the homotopy sequence, it yields the next result. 

13 COROLLARY The inclusion map j: (X,xo) C (X,A) induces a homomorphism 

j#: '7Tz(X,xo) --c> '7Tz(X,A,xo) 

whose image is in the center of '7Tz(X,A,xo). -

The following result is a generalization of theorem 1.8.7 to the higher 
relative homotopy groups. 

14 THEOREM Let f: (X,A,xo) --c> (Y,B,yo) and g: (X,A,xo) --c> (Y,B,Yl) be 
freely homotopic. Then there is a path w in B from yo to Yl such that 

f# = h[w] 0 ~: '77n(X,A,xo) --c> '77n(Y,B,yo) n > 2 

PROOF Let F: (X,A) X I --c> (Y,B) be a homotopy from f I (X,A) to g I (X,A) 
and let w(t) = F(xo,t). Then w is a path in B from yo to Yl, and if 
a: (In,in,po) --c> (X,A,xo) represents an element of '77n(X,A,xo), then the composite 

(In,in) X I ~ (X,A) X I ~ (Y,B) 

is an w-homotopy from f 0 a to goa. Therefore 

f#[aJ = [J 0 a] = h[w]([g 0 aJ) = (h[w] 0 ~)[aJ -

This yields the following analogue of theorem 1.8.8. 

15 COROLLARY Let f: (X,A) --c> (Y,B) be a homotopy equivalence. For any 
x E A, f induces isomorphisms 

f#: 7Tn(X,A,x) ;::::: '77n(Y,B,f(x)) 

PROOF Let g: (Y,B) --c> (X,A) be a homotopy inverse of f. By theorem 14, 
there are paths w in A from gf(x) to x and w' in B from fgf(x) to f(x) sueh that 
the following diagram is commutative 

'7Tn(X,A,x) 

f#~ 

'77n(Y,B,f(x)) 

h r",) '77n(X,A,gf(x)) 

y ~f# 

hlwi) '77n(Y,B,fgf(x)) 

Since the maps h[w] and h[w'] are isomorphisms, all the maps in the diagram 
are isomorphisms. -
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4 TilE III'REWU'Z 1I0MO~IORPIIISM 

There are no algorithms for computing the absolute or relative homotopy 
groups of a topological space (even when the space is given with a triangula­
tion). One of the few main tools available for the general study of homotopy 
groups is their comparison with the corresponding integral Singular homology 
groups. Such a comparison is effected by means of a canonical homomorphism 
from homotopy groups to homology groups. The definition and functorial 
properties of this homomorphism are our concern in this section. A theorem 
asserting that in the lowest nontrivial dimension for the homotopy group this 
homomorphism is an isomorphism will be established in the next section. 

We shall be working with the integral singular homology theory through­
out this section. Let n :::0: 1 and recall that Hq(In,1n) = 0 for q =1= nand 
Hn(In,1n) is infinite cyclic. To consider relations among the homology groups 
of certain pairs in In, for n :::0: 1 we define 

lIn = {(t1, ... ,tn) E In I tn ~ lh} 
lIn = (lIn n in) U {(tl, ... ,tn) E In I tn = Vz} 
12n = {(h, ... ,tn) E In I tn :::0: lh} 
12n = (I2n n In) U {(tl, ... ,tn) E In I tn = Vz} 

Then lIn U 12n = In and (lIn U 12n) n (11 n U 12n) = lIn U 12n. By the exactness 
of the Mayer-Vietoris sequence of the excisive couple {lIn U 12n, lIn U 12n}, 
we have 

Hq(I l n U 12n, lIn U 12n) EB Hq(11n U 12n, lIn U 12n) :::::: Hq(In, lIn U 12n) 

By excision, we also have isomorphisms 

Hq(I1n,11n) :::::: Hq(I l n U 12n, lIn U 12n) 
Hq(I2n,12n) :::::: Hq(i1n U 12n, tIn U 12n) 

Combining these, we see that if we let i 1 : (I1n,11n) C (In, lIn U 12n) and we 
let i 2 : (I2n,12n) C (In, lIn U 12n), then we have the following result. 

I LEMMA The inclusion maps i1 and i2 define a direct-sum representation 

h* ED i 2*: Hq(I1n,11n) ED Hq(I2n,12n) :::::: Hq(In, lIn U 12n) • 

Let VI: (In,1n) ---'? (I1 n,11n) be defined by V1(t1, ... ,tn) = (t1, ... ,tn-1,tn/2) 
and define V2: (In,1n) ---'? (I2n,12n) by v2(h, ... ,tn) = (t1, ... ,tn-I, (tn + 1)/2). 
Let i: (In,1n) C (In, lIn U 12n). 

2 COROLLARY For any z E Hn(In,1n) 

i* z = h* V1* Z + i 2* V2* Z 

PROOF Let i1: (In, lIn U 12n) C (In, lIn U 12n) and i2: (In, lIn U 12n) C 

(In, tIn U 12n). Then h*i1* = 0 and i1*i 2* is an isomorphism of Hq(I2n,12n) 
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onto Hq(In, lIn U j2n) (induced by the inclusion map, which is an excision). 
Similarly, j2*i2* = 0 and j2*h* is an isomorphism of Hq(I1n,iln) onto 
Hq(In, jln U 12n). It follows from lemma 1 that 

ker 11* n ker 12* = 0 

Therefore, to prove the corollary it suffices to prove that 

is in the kernel of ir* and in the kernel of Iz* . 
We first prove that ir* (i* z - il* /11* Z - iz* /1z*z) = O. Because 11* il* = 0, 

we must show that iI* i* z = il* i z* /1z* z. Clearly iIi is the inclusion map 
(In,in) C (In, h n U jzn) and iIiz/1z is the map f: (In,in) --,) (In, lIn U jzn) 
defined by f(tr, ... ,tn) = (tl, ... ,tn-I, (tn + 1)/2). A homotopy H from 
iIi to f is defined by 

H((tl, ... ,tn), t) = (tl, ... ,tn-I, (tn + t)/(l + t)) 
Therefore ir* i* = f* = jl* iz* /1z*. A similar argument shows that 

jz* (i* z - i1* /11* Z - iz* /1Z* Z) = 0 • 

For n ~ 1 the subset I X jn-l U 0 X In-l C jn is contractible. There­
fore Hq(In, I X jn-l U 0 X In-I) = 0 for all q. By exactness of the homology 
sequence of the triple (In, jn, I X jn-l U 0 X In-I), it follows that the map 

0: Hq(In,in) --,) Hq_l(jn, I X jn-l U 0 X In-I) 

is an isomorphism for all q. For n ~ 2 let 

j: (In-l,in-l) --,) (jn, I X jn-l U 0 X In-I) 

be defined by i(tl, ... ,tn-I) = (1, tl, ... ,tn-I). Then j is the composite of 
a homeomorphism from (In-l,in-l) to (1 X In-I, 1 X jn-l) and the excision 
map 

(1 X In-I, 1 X jn-l) C (in, I X jn-l U 0 X In-I) 

Therefore the homomorphism 

i*: Hq(In-l,in-l) --,) Hq(in, I X jn-l U 0 X In-I) 

is an isomorphism for all q. 
We define canonical generators Zn E Hn(In,in) for n ~ 1 by induction on 

n as follows: 

(a) Zl E HI(I,i) is the unique element with OZI = (I) - (0) in Ho(i). 
(b) For n ~ 2, Zn E Hn(In,in) is the unique element such that 
oZn = t* Zn_l in Hn_l(in, I X jn-l U 0 X In-I). 

Given a map a: (In,in) --,) (X,A), then a* Zn E Hn(X,A). If a c:::::: /3, then 
a* Zn = /3* Zn. Therefore there is for n ~ I a well-defined map 

cp: 7Tn(X,A,xo) --,) Hn(X,A) 
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such that <p[a) = a* Zn, where a: (In,in) ---'> (X,A) maps Zo to Xo and represents 
an element of 7Tn(X,A,xo). By identifying 7Tn(X,XO) with 7Tn(X,{Xo},xo), we also 
have a map <p: 7Tn(X,XO) ---'> Hn(X,xo). Some of the basic properties of <p are 
summarized in the next result. 

3 THEOREM If n ::::: 2 or if n = 1 and A = {xo}, the map <p is a homomor­
phism. It has the following functorial properties: 

(a) For n ::::: 2 commutativity holds in the square 

7Tn(X,A,xo) ~ 7Tn-l(A,xo) 

'Pt t'P 
Hn(X,A) ~ Hn-l(A,xo) 

(b) Given f: (X,A,xo) ---'> (Y,B,yo), commutativity holds in the square 

7Tn(X,A,xo) ~ 7Tn(Y,B,yo) 

'Pt t'P 
Hn(X,A) ~ Hn(Y,B) 

PROOF Let aI, a2: (In,in) ---'> (X,A) be such that 

al(tl, ... ,tn-I, 1) = a2(tl, ... ,tn-I, 0) 

[any two maps of (In,in) to (X,A) are homotopic to such maps if n ::::: 2 or if 
n = 1 and A = {xo}). Then al * a2 = {3o i, where i: (In,in) C (In, i ln U i2n) 
and {3: (In, i ln U i2n) ---'> (X,A) is defined by 

Then <p[al * a2J = {3* i* Zn = {3* (i~l*Zn + i2*V2*Zn) , the last equality by 
corollary 2. Since {3hvl = al and {3i2v2 = a2, we see that 

<p[al * (2) = al*Zn + a2*Zn = <p[al) + <p[(2) 

which shows that <p is a homomorphism whenever 7Tn(X,A,xo) is a group. 
To prove (a), let a: (In,in) ---'> (X,A) represent an element of 7Tn(X,A) for 

n ::::: 2 and suppose that a(I X in- l U 0 X In-I) = Xo. Then a[a) = [a'), where 
a': (In-l,in-l) ---'> (A,xo) is defined by a' = (a I (in, I X i n- l U 0 X In-l)) 0 ;. 

Then 

cpa[a] = a~ z,,-l = (al(1n, I X !n-l U 0 X In-l))*j*z,,_l 
= (a I (in, I X in- l U 0 X In-l))* aZn 
= aa* Zn = a<p[ a) 

Finally, (b) follows from the fact that (fa)* = f* a*. • 

The map <p is called the Hurewicz homomorphism. The next result follows 
from theorem 3. 
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4 COROLLARY The Hurewicz homomorphism maps the homotopy sequence 
of (X,A,xo) into the homology sequence of (X,A,xo). -

Our next objective is to show that the Hurewicz homomorphism com­
mutes with the actions of the appropriate fundamental group on the homotopy 
set. We consider the relative case first. 

:; LEMMA Let [a] E 'lTn(X,A,xo) for n ~ 2 and let [w] E 'lTl(A,xo). Then 

<p(h[w][a]) = q;[a] 

PROOF Let [a] be represented by a: (In,in) ~ (X,A) and let h[w][a] be repre­
sented by a': (Injn) ~ (X,A). Then a and a' are freely homotopic [that is, 
a and a' are homotopic as maps of (Injn) to (X,A)]. Therefore 

<p[a] = a* Zn = a~ Zn = <p[a'] = <p(h[w][a]) -

Next we prove the corresponding result for the absolute case. 

6 LEMMA Let [a] E 'lTn(X,xo) and [w] E 'lTl(X,XO). Then 

<p(h[w][a]) = <p[a] 

PROOF Let Y be the space obtained from In by collapsing in to a single 
point, this point to be the base point of Y, denoted by yo. The collapsing map 
g: (Injn) ~ (Y,yo) induces a one-to-one correspondence between [Y,yo; X,xo] 
and [Injn; X,xo]. Therefore 'lTn(X,xo) can be identified with [Y,yo; X,xo]. 
Furthermore, g*: Hn(In,in) :::::: Hn(Y,yo), and we let g* Zn = Z~ E Hn(Y,yo). 
In these terms, if an element of 'lTn(X,xo) is represented by a: (Y,yo) ~ (X,xo), 
then <p[a] = a* Z~. Let h[w][a] be represented by a': (Y,yo) ~ (X,xo). Then a 
and a' are homotopic as maps of Y to X. Therefore, if Z~ E Hn(Y) is the 
unique element such that i~ Z~ = Z~ [where i': Y C (Y,yo)], then 

(a I Y)* Z~ = (a' I Y)* Z~ 

Let 1': X C (X,xo). Then 

<p[ a] = a* Z~ = a* i~ Z~ = i~ (a I Y)* Z~ 

Similarly, <p[ a'] = i~ (a' I Y)* Z~, and 

<p[a] = <p[a'] = <p(h[w][a]) -

We define 'lT~(X,A,xo) for n ~ 2 to be the quotient group of 'lTn(X,A,xo) 
by the normal subgroup G generated by 

{(h[w][a])[a]-l I [a] E 'lTn(X,A,xo), [w] E'lTl(A,xo)} 

By lemma 5, <p maps G to 0 and there is a homomorphism 

<p': 'lT~(X,A,xo) ~ Hn(X,A) 

whose composite with the canonical map 1/: 'lTn(X,A,xo) ~ 'lT~(X,A,xo) is <po 

Note that, by theorem 7.3)2, 'lT~(X,A,xo) is abelian for all n ~ 2. 
Similarly, we define 'lT~(X,xo) for n ~ 1 to be the quotient group of 
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'lTn(X,xo) by the normal subgroup H generated by 

{(h[wJ[a])[a]-ll [a] E 'lTn(X,xo), [w] E 'lT1(X,XO)} 

By lemma 6, cp maps H to 0, and there is a homomorphism 

cp': 'IT~(X,xo) --? Hn(X,xo) 
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whose composite with the canonical map 1): 'lTn(X,xo) --? 'IT~(X,xo) is cpo Note 
that 'lTl(X,xo) is the quotient group of 'lT1(X,XO) by its commutator subgroup. 
In particular, 'IT~(X,xo) is abelian for all n :::::: l. 

Because the groups 'IT~(X,A,xo) and 'IT~(X,xo) are abelian, we shall find 
them easier to compare with the homology groups (which are abelian) than 
the homotopy groups themselves. For the comparison it will be convenient to 
replace the triple (In,in,zo) , which is the antecedent triple used to define 
'lTn(X,A,xo), by the homeomorphic triple (Lln,~n,vo), where Lln is the standard 
n-simplex used in Sec. 4.1 to define the singular complex (vertices of Lln will 
be denoted by Vo, V1. ... ,vn). To achieve this replacement we need only 
choose a homeomorphism of (Lln,~n,vo) onto (In,in,zo). Any homeomorphism 
h: (Lln,~n) --? (In,in) will induce an isomorphism 

h*: Hn(Lln,~n) ::::: Hn(In,in) 

The identity map ~n: Lln C Lln is a singular simplex which is a cycle modulo 
~n and whose homology class {~n} is a generator of the infinite cyclic group 
Hn(Lln,~n). Since Zn is a generator of Hn(In,in) and h* is an isomorphism, 
either h* gn} = Zn or h* {~n} = -Zn. We want to choose h so that the 
former holds. If n = 1, the choice of Zl is such that the simplicial homeomor­
phism h: Ll 1 --? I with h(vo) = ° and h(V1) = 1 will have the desired 
property (that is, h* {~d = Zl). If n > 1, we choose an arbitrary homeomor­
phism h: (Lln,~n) --? (In,in) such that h(vo) = ZOo If h*{~n} = -Zn, we 
replace h by hA., where A. is a simplicial homeomorphism of Lln to itself such 
that A.(vo) = Vo and A.* {~n} = - {~n} (for example, A. is the simplicial map 
which interchanges V1 and V2 and leaves all other vertices of Lln fixed). There­
fore, in any event, we can find a homeomorphism h: (Lln,~n,vo) --? (In,in,zo) 
such that h* {~n} = Zn. Using such a homeomorphism to represent elements 
of 'lTn(X,A,xo) by maps a: (Lln,~n) --? (X,A) such that a(vo) = Xo, we see that 
cpr a] = a* {~n} = {a}, the latter being the homology class in (X,A) of the 
singular simplex a. 

For any pair (X,A) with base point Xo E A and any n :::::: 0, let Ll(X,A,xo)n 
be the subcomplex of Ll(X) generated by singular simplexes 0: Llq --? X having 
the property that 0 maps each vertex of M to Xo and maps the n-dimensional 
skeleton (Llq)n of Llq into A. Then Ll(X,A,xo)n+1 C Ll(X,A,xo)n, and these two 
chain complexes agree in degrees :::; n. Thus we have a decreasing sequence 
of sub complexes Ll(X,A,xo)n (where n :::::: 0) of Ll(X) whose intersection is con­
tained in Ll(A). If X is path connected and (X,A) is n-connected for some 
n :::::: 0, we shall see that the inclusion map Ll(X,A,xo)n C Ll(X) is a chain 
equivalence. The following lemma will be used for this purpose. 
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7 LEMMA Let C be a subcomplex of the free chain complex ~(X) such that 
C is generated by the singular simplexes of X in it. Assume that to every singular 
simplex cr: ~ q -> X there is assigned a map P( cr): ~ q X I -> X such that 

(a) P(o)(z,O) = o(z) for z E /1q. 
(b) Define a: /1q ~ X by a(z) = P(o)(z,l). Then a is a singular simplex in 
C, and if 0 is in C, a = o. 
(c) If eqi: /1q-1 ~ /1q omits the ith vertex, then P(o) 0 (eqi X 1) = P(O(i»). 

Then the inclusion map C C /1(X) is a chain equivalence. 

PROOF Let;: C C /1(X) be the inclusion chain map and let 7': /1(X) ~ C be 
the chain map defined by 7'(0) = a [(c) implies that 7' is a chain map]. By (b), 
7' a i = Ie, hence to complete the proof we need only verify that i 0 7' c::-:' 1,,(X). 

For any space Y let ho, hI: Y ~ Y X I be the maps ho(y) = (y,O) and 
hl(y) = (y,l). In the proof of theorem 4.4.3 it was shown (by the method of 
acyclic models) that there exists a natural chain homotopy D: /1(Y) ~ /1(Y X 1) 
from /1(ho) to /1(hl)' Define a chain homotopy 

D': /1(X) ~ /1(X) 

by D'(o) = /1(P(o))(D(~q)), where 0: f1q ~ X and ~q: /1q C /1q. By (c), D' is a 
chain homotopy, and by (a) and the definition of a, D' is a chain homotopy 
from 1,,(X) to i 0 7'. • 

8 THEOREM Let Xo E A C X and assume that X is path connected and 
(X,A) is n-connected for some n :::;, O. Then the inclusion map /1(X,A,xo)n C /1(X) 
is a chain equivalence. 

PROOF For 0: f1q ~ X we define P(o) by induction on q to satisfy the prop­
erties oflemma 7, and to have the additional property that if 0 is in /1(X,A,xo)n, 
then P(o) is the composite 

/1q X 14 /1q ~ X 

where p is projection to the first factor. 
If q = 0, then 0: /10 ~ X is a point of X, and because X is path connected, 

there is a map P(o): /10 X I ~ X such that P(o)(/1° X 0) = 0(/10) and 
P(o)(/1° X 1) = Xo [and if 0(/10) = Xo, we take P(o) to be the constant map to 
xo]. This defines P(o) for all 0 of degree 0 to have the desired properties. 

Assume 0 < q ::;: n and that P(o) has been defined for all 0 of degree < q 
to have the properties stated above. Given a singular simplex 0: /1q ~ X, if 0 
is in /1(X,A,xo)n, define P(o) = 0 0 p. If 0 is not in /1(X,A,xo)n, (a) and (c) of 
lemma 7 define P(o) on /1q X 0 u I1q X I, and we letf: /1q X 0 u I1q X I ~ X 
be this map. There is a homeomorphism h: Eq X I::::; f1q X I such that 

h(Eq X 0) = f1q X 0 u I1q X I, h(Sq-1 X 0) = I1q X 1 

and 

h(Sq-1 X I U Eq X 1) = /1q X 1 
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Let f': (Eq,Sq-l) -? (X,A) be defined by f'(z) = f(h(z,O)). Because q ~ nand 
(X,A) is n-connected, there is a homotopy H: (Eq,Sq-l) X I -? (X,A) from f' 
to some map of Eq into A (in fact, by the definition of n-connectedness, there 
is even such a homotopy relative to Sq-l). Then the composite 

!:,.q X I ~ Eq X I ~ X 

can be taken as P(a). 
In this way P(a) is defined for all degrees q ~ n. Note that a singular 

simplex of degree> n is in !:"(X,A,xo)n if and only if every proper face is in 
!:"(X,A,xo)n. Therefore, if P(a) has been defined for all degrees < q, where 
q > n, and if a: !:,.q -? X, then we define P(a) = a 0 p if a is in !:"(X,A,xo)n and 
to be any map !:,.q X I -? X satisfying (a) and (c) of lemma 7 (such maps exist 
by the homotopy extension property). Then P(a) will necessarily satisfy (b) of 
lemma 7, and we have shown that P(a) can be defined for all a to satisfy 
lemma 7. • 

For n > ° we define 

There are canonical homomorphisms 

... -? Hq(n)(X,A,xo) -? Hq(n-l)(X,A,xo) -? ... -? Hq(O)(X,A,xo) -? Hq(X,A) 

9 COROLLARY Assume that A is path connected and for some n :2 0, 
(X,A) is n-connected. Then the canonical map is an isomorphism for all q 

Hq(n)(X,A,xo) ::::::: Hq(X,A) 

PROOF For any n :2 0, !:"(X,A,xo)n n !:"(A) is generated by the set of singular 
simplexes of A all of whose vertices are at Xo. This is independent of n, and 
because A is path connected, (A,{ xo}) is O-connected, and it follows from 
theorem 8 that the inclusion map !:"(X,A,xo)n n !:"(A) C !:"(A) is a chain 
equivalence for all n :2 0. 

Since (X,A) is n-connected, where n :2 0, and A is path connected, X is 
also path connected, and by theorem 8, the inclusion map !:"(X,A,xo)n C !:"(X) 
is a chain equivalence. The result follows from these facts, using exactness 
and the five lemma. • 

5 TilE IIfTREWJ('Z ISOMORPIIIS!\<1 TIIEOREM 

The main result of this section asserts that if X and A are path connected and 
for some n :2 1, (X,A) is n-connected, then the Hurewicz homomorphism cp 
induces an isomorphism cp' of 7T~+l(X,A,xo) with Hn+l(X,A). This result is 
equivalent to a homotopy addition theorem which asserts that the sum of the 
(n + I)-dimensional faces of an (n + 2)-simplex is the homotopy boundary of 
the identity map of the simplex. We prove both these theorems Simultaneously 
by induction on n. 



394 HOMOTOPY THEORY CHAP. 7 

In the proof we shall make essential use of the complexes A(X,A,xo)n and 
of corollary 7.4.9. Let ex: (An,Lin,(An)O) ~ (X,A,xo) represent an element of 
'1Tn(X,A,xo). Then ex is a singular simplex in A(X,A,xo)n-l and represents a 
homology class {ex} E Hn(n-l)(X,A,xo). Since any element of '1Tn(X,A,xo) can be 
represented by such a map ex, the Hurewicz homomorphism cp': '1T~(X,A,xo) ~ 
Hn(X,A) factors into the composite 

'1T~(X,A,xo) ~ Hn(n-l)(X,A,xo) ~ Hn(X,A) 

and there is a commutative diagram 

'1Tn(X,A,xo) ~ 

q>~ V 
Hn(X,A) ~ Hn(n-l)(X,A,xo) 

We now formulate the propositions corresponding to the relative and 
absolute Hurewicz isomorphism theorems. 

I PROPOSITION tPn (n 2:: 2). Let A be path connected and let (X,A) be 
(n - I)-connected. Then cp' is an isomorphism 

cp': '1T~(X,A,xo) ~ Hn(X,A) 

2 PROPOSITION <l>n (n 2:: 1). Let X be (n - I)-connected. Then cp' is an 
isomorphism 

cp': '1T~(X,xo) ~ Hn(X,xo) 

We shall prove both these propositions simultaneously by induction on n, 
together with a third proposition, which we now formulate. For n 2:: 2, each 
face map eA+l is a map of triples 

eli+l: (An,Lin,vo) ~ (Lin+1,(An+l)n-l,Vl) 

eA+l: (An,Lin,vo) ~ (Lin+1,(An+l)n-l,vo) 0 < i ~ n + 1 

For vertices v and v' of An+l we use [vv'] to denote the path class of the 
linear path in An+1 from v to v'. We define an element bl E '1Tl(Li2,VO) and, for 
n 2:: 2, an element bn E '1Tn(Lin+l,(An+l )n-l,vo) by 

hi = [VoVI] * [VI V2] * [V2VO] 
b2 = (h[vovd[e3oJ)[e32J[e3l]-l[e33]-l 
bn = h[vovd[e~+l] + ~ (-I)i[eJ,+l] n 2:: 3 

Ods;n+l 

For n = 1 let i: (Li2,VO) C (A2,VO) and for n 2:: 2 let 1: (Lin+l,(An+l)n-l,vo) C 

(An+1,(An+l)n-l,vo). The following proposition corresponds to the homotopy 
addition theorem. 

3 PROPOSITION Bn (n 2:: 1). l#Jn = O. 

The simultaneous proof of propositions 1, 2, and 3 will consist of the fol­
lowing five parts: 
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(a) Proof of B1 
(b) Proof that B1 = 1>1 
(c) Proof that 1>1, 1>2,. , 1>n-1 = Bn for n ::;, 2 
(d) Proof that Bn = <Pn for n ::;, 2 
(e) Proof that <Pn = 1>n for n ::;, 2 

(a) PROOF OF B1 We must prove that i#b1 = O. But i~l E 7T1(il2,VO), and 
7Tl(il2,VO) = 0 because il2 is contractible. -

(b) PROOF THAT B1 = 1>1 Let X be path connected. We must prove that 
cp': 7Ti(X,xo) :::::; H1(X,XO). Because X is path connected, the inclusion map 
il(X,{xo},xo)O C il(X) is a chain equivalence, and we need only show that 

cp": 7Ti(X,xo):::::; H1(0)(X,{xo},xo) 

If a: (il1,Li1) ~ (X,xo) represents an element raJ' E 7Ti(X,xo), then 
cp"[a]' = {a}, where {a} is the homology class in H1(0)(X,{xo},xo) of the 
singular cycle a. Given a singular I-simplex a: (ill,Li1) ~ (X,xo) in il(X,{xo},xo)O, 
it determines an element [a] E 7T1(X,XO), and therefore an element 
[aJ' E 7Ti(X,xo). If a is the constant singular I-simplex at Xo, then clearly, 
[a], = O. Because 7Ti(X,xo) is abelian and il1(X,{XO},xo)0 is the free abelian 
group generated by the singular simplexes in it, there is a homomorphism 

1/;: il1(X,{XO},xo)0/il1(XO) ~ 7Ti(X,xo) 

such that 1/;(a) = [aJ'. We shall show, by using B1, that the composite 

il2(X,{xo},xo)0/il2(xo) ~ il1(X,{xo},xo)0/il 1(xo)'±' 7Ti(X,xo) 

is trivial. Given a: (il2,(il2)0) ~ (X,xo), let a(O), a(1), and a(2) be the faces of a, 
as usual. Then 

1/;o[a] = [a(2)]' + [a(O)]' - [a(1)]' = [(a(2) * a(O)) * (a(1)t1J' 
= TJ(U' I A2)#([voVt] * [V1V2] * [V2VO]) = rjU' #J#b1 = 0 

Therefore 1/; defines a homomorphism 

1/;': H1(0)(X,{xo},xo) ~ 7Ti(X,xo) 

and this is easily seen to be an inverse of cp". -

(c) PROOF THAT 1>1, ... , 1>n-1 = Bn FOR n ::;, 2 Consider the commutative 
diagram 

7T n+1( iln+l,Lin+l,vo) 

\.'" 
7T n(Li n+1,( iln+1 )n-1 ,vol 

7T n(iln+l,(iln+1 )n-1, vol 
j"J" 

The top row, being part of the homotopy sequence of the triple 
(iln+1,Lin+1,(iln+1)n-1), is exact. The bottom row, being part of the homotopy 
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sequence of the pair (~n+l,(~n+1)n-l), is also exact. From the exactness of the 
homotopy sequence of the pair (~n+l,~n+l) and the fact that ~n+l is contract­
ible, it follows that a is an isomorphism. Therefore 

ker i# = im a' = im (i# 0 a) = im i# = ker a" 
Thus Bn is equivalent to the equation a"(bn) = O. We prove the latter, giving 
one proof for n = 2 and another for n > 2. 

If n = 2, we have 

a" (b2) = (h[vovd a"[ e30]) a"[ e32] a"[ e31]-la"[ e33]-1 

To calculate a"[e3i ], let ~: (~2,~2,VO) C (~2,~2,VO) be the identity map. Then 
[~] E '1T2(~2,~2,VO), and because '1Tl(~2,VO) is infinite cyclic (since ~2 is homeo­
morphic to SI), it follows from <PI that cp: '1Tl(~2,VO) ::::: H1(~2,VO)' There is a 
commutative square 

'1T2(~2,~2,VO) ~ '1Tl(~2,VO) 

'1'1 ;:::;~'P 

H2(~2,~2) -4 H1(~2,VO) 

and acp[~] = a{o = W2) + ~(O) - ~(1)} = {w} = cp[w] 

where w: (~1,~1) --') (~2,VO) is the path w = W 2) * ~(O») * (~(1»)-1. (The 2-chain 
~(2) + ~(O) _ ~(1) is homologous to w because it is easy to find singular 
2-simplexes 01 and 02 in ~2 such that 

01(0) = ~(O) 01(1) = ~(2) * ~(O) 01(2) = ~(2) 

02(0) = ~(1) 02(1) = ~(2) * ~(O) 02(2) = W2) * ~(O») * (~(1»)-1 

Then a( 01 - 02) = ~(2) + ~(O) - ~(1) - w.) Because cp is an isomorphism, it 
follows that 

To return to the calculation of a"[e3 i ], we have 

a"[e3 i ] = a"(e3i )#W = (e3 i I ~2)#a[~] 
= [e3 1(vO)e3 1(v1)] * [e3 1(V1)ea l(V2)] * [e3 i(v2)e3 t(vO)] 

Using this, direct substitution into the right-hand side of the equation for 
a"(b2) shows that a"(b2) = O. 

For n > 2 note that (~n+1)n-l contains the two-dimensional skeleton of 
~n+1. Therefore (~n+l )n-l is simply connected (because ~n+l is simply con­
nected). Similarly, for q .:s; n - 2, Hq((~n+1)n-l,vo)::::: Hq(~n+1,vo) = O. By 
<PI, ... , <Pn- 2, it follows that (~n+1)n-l is (n - 2)-connected, and by <Pn- 1, 
there is an isomorphism 

cp: '1Tn_l((~n+l)n-l,vo) ::::: Hn_l((~n+l)n-l,vo) 

Hence, to complete the proof it suffices to show that cpa"(bn) = O. This 
follows from the equalities 



SEC. 5 THE HUREWICZ ISOMORPHISM THEOREM 397 

qJo"(bn) = o"qJ(bn) = 0" {~ (-I)ieh+d = 0"0' {~n+d = o"i*o{ ~n+d = 0 • 

(d) PROOF THAT Bn = <Pn FOR n ~ 2 The argument is similar to the proof of 
part (b) above. The map qJ' factors into the composite 

'7T~(X,A,xo) ~ Hn(n-l)(X,A,xo) :? Hn(X,A) 

If a: (Lln,6n,vo) ----,) (X,A,xo) is a map such that a maps all the vertices to Xo, 
then qJ"[a], = {a} E Hn(n-l)(X,A,xo). To define an inverse of qJ", if 
a: (Lln,6n,(Lln)0) ----,) (X,A,xo) is a singular simplex in Lln(X,A,xo)n-l, then 
[a) E '7Tn(X,A,xo) and 1/[a) = [a], E '7T~(X,A,xo). If a(Lln) C A, then [a)' = 0, 
and because '7T~(X,A,xo) is abelian, there is a homomorphism 

1/;: Lln(X,A,xo)n-l/(Lln(X,A,xo)n-l n Lln(A)) ----,) '7T~(X,A,xo) 

such that 1/;(a) = [a)'. 
We show that the composite 

1/; 0 0: Lln+l(X,A,xo)n-l/(Lln+l(X,A,xo)n-l n Lln+l(A)) ----,) '7T~(X,A,xo) 

is trivial. This follows from Bn, because if 

then 

a: (Lln+1 ,(Lln+l )n-l ,(Lln+l )0) ----,) (X,A,xo) 

1/;o(a) = ~ (-I)i[a(i)]' = 1/(a I (6n+1,(Lln+l)n-l)#(bn)) 
= 1/a#i#(bn) = 0 

Therefore 1/; defines a homomorphism 

1/;': Hn(n-l)(X,A,xo) ----,) '7T~(X,A,xo) 

such that 1/;' { a} = [a)', and 1/;' is easily seen to be an inverse of qJ". • 

(e) PROOF THAT <Pn = <I>n FOR n ~ 2 For n ~ 2, if X is (n - I)-connected, 
then the pair (X,{xo}) is (n - I)-connected and '7T~(X,{xo},xo) is canonically 
isomorphic to '7T~(X,xo) = '7Tn(X,xo). Then <l>n results from <Pn applied to the 
pair (X, {xo}). • 

This completes the proof of propositions 1, 2, and 3. From proposition 1 
we obtain the following relative Hurewicz isomorphism theorem. 

4 THEOREM Let Xo E A C X and assume that A and X are path connected. 
If there is an n ~ 2 such that '7Tq(X,A,xo) = 0 for q < n, then Hq(X,A) = 0 
for q < nand qJ' is an isomorphism 

qJ': '7T~(X,A,xo) ;::::; Hn(X,A) 

Conversely, if A and X are simply connected and there is an n ~ 2 such that 
Hq(X,A) = 0 for q < n, then '7Tq(X,A,xo) = 0 for q < nand qJ is an isomorphism 

qJ: '7Tn(X,A,xo) ;::::; Hn(X,A) • 

Similarly, from proposition 2 we obtain the following absolute Hurewicz 
isomorphism theorem. 
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li THEOREM Let Xo E X and assume that there is n ~ 1 such that 
'1Tq(X,xo) = 0 for q < n. Then Hq(X,xo) = 0 for q < nand cp' is an isomorphism 

cp': '1T~(X,xo) ::::::; Hn(X,xo) 

Conversely, if X is simply connected and there is n ~ 2 such that Hq(X,xo) = 0 
for q < n, then '1Tq(X,xo) = 0 for q < nand cp is an isomorphism 

cp: '1Tn(X,xo) ::::::; Hn(X,xo) • 

In the absolute case when X is simply connected and in the relative case 
when X and A are simply connected, each of these theorems asserts that the 
first nonvanishing homotopy group is isomorphic to the first nonvanishing 
homology group. 

6 COROLLARY For n ~ 1 there is a commutative diagram of isomorphisms 

'1Tn+1(En+1,Sn,po) ~ '1Tn(Sn,po) 

~~ ~~ 

Hn+l(En+l,Sn) ~ Hn(Sn,po) 

PROOF The diagram is commutative, by theorem 7.4.3a, and both horizontal 
maps are isomorphisms because En+1 is contractible [and because the homo­
topy and homology sequences of (En+1,Sn,po) are exact]. The right-hand ver­
tical map is an isomorphism, by proposition 2 and the fact that (in the case 
n = 1) '1Tl(Sl,PO) is abelian. • 

The following useful consequence of corollary 6 is called the Brouwer 
degree theorem. 

7 COROLLARY For n ~ 1 two maps f, g: Sn ~ Sn are homotopic if and 
only if f* = g* : Hn(Sn) ~ Hn(Sn). Similarly, two maps f, g: (En+1,Sn) ~ 
(En+1,Sn) are homotopic if and only if f* = ~: Hn+l(En+l,Sn) ~ Hn+l(En+l,Sn). 

PROOF We consider the absolute case first. Given maps f, g: Sn ~ Sn, there 
exist homotopic maps f' and g', respectively, such that f'(po) = g'(po) = po 
(because Sn is path connected). Because Sn is n-simple, f' and g' are freely 
homotopic if and only if they are homotopic as maps from (Sn,po) to (Sn,po). 
Therefore f ~ g if and only if [f'] = [g'] in '1Tn(Sn,po). By corollary 6, 
[f'] = [g'] if and only if cp[f'] = cp[g'], and from the definition of cp, 
cp[f'] = cp[g'] if and only if 

f~ = ~: Hn(Sn,po) ~ Hn(Sn,po) 

Since there are commutative squares 

Hn(Sn) ? Hn(Sn,po) 

f.~ ~f* 

Hn(Sn) ? Hn(Sn,po) 

the result follows. 

Hn(Sn) ? Hn(Sn,po) 

g.~ 19,; 

Hn(Sn) ? Hn(Sn,po) 
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For the relative case note that because En+l is contractible, it follows 
from the homotopy extension property of (En+1,Sn) that two maps 
f, g: (En+1,Sn) -? (En+1,Sn) are homotopic if and only if fl Sn, g I Sn: Sn -? Sn 
are homotopic. Since there are commutative squares 

Hn+l(En+l,sn) ~ Hn(Sn) Hn+l(En+l,sn) b Hn(Sn) 

1.1 1(/18")* g.l l(glsn). 

the relative case follows from the absolute case. • 

8 COROLLARY For Xo E X the map 

l{;: [Sn,po; X,xol-? Hom (7Tn(Sn,po), 7Tn(X,XO)) 

sending [0'] to 0'# is an isomorphism. 

PROOF This follows from corollary 6, because the fact that 7Tn(Sn,po) is infinite 
cyclic implies that there is an isomorphism 

[3: Hom (7Tn(Sn,po), 7Tn(X,XO)) :::::: 7Tn(X,XO) 

sending a homomorphism A to A(a), where a E 7Tn(sn,po) is the homotopy 
class of the identity map. Then, ([30 l{;)[O'l = O'#(a) = [0'], and so l{; is an 
isomorphism. • 

The following useful consequence of the relative Hurewicz isomorphism 
theorem is known as the Whitehead theorem. 

9 THEOREM Let X and Y be path-connected pointed spaces and let 
f: (X,xo) -? (Y,yo) be a map. If there is n ~ 1 such that 

f#: 7Tq(X,XO) -? 7Tq(Y,yO) 

is an isomorphism for q < n and an epimorphism for q = n, then 

f* : Hq(X,xo) -? Hq(Y,yo) 

is an isomorphism for q < n and an epimorphism for q = n. Conversely, if 
X and Yare simply connected and f* is an isomorphism for q < n and an 
epimorphism for q = n, then f # is an isomorphism for q < n and an epimor­
phism for q = n. 

PROOF Let Z be the mapping cylinder of f. There are inclusion maps 
i: X C Z and i: Y C Z and a deformation retraction r: Z -? Y such that 
f = r 0 i. Then r: (Z,yo) -? (Y,yo) induces isomorphisms r#: 7Tq(Z,yO) :::::: 7Tq(Y,yO) 
and T*: Hq(Z,yo) :::::: Hq(Y,yo) for all q. Because X and Yare path connected, 
so is Z, and 7Tq(Z,XO) :::::: 7Tq(Z,yO)' Therefore r: (Z,xo) -? (Y,yo) also induces 
isomorphisms r#: 7Tq(Z,XO) :::::: 7Tq(Y,yO) and r*: Hq(Z,xo) :::::: Hq(Y,yo) for all q. 
It follows that we can replace (Y,yo) in the theorem by (Z,xo) and the condi­
tIuns un f# ana f* by the corresponding conditions on i# aud i*. From the 
exactness of the homotopy sequence of (Z,X,xo), it follows that i# is an 
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isomorphism for q < n and an epimorphism for q = n if and only if 
1T.q(Z,X,xo) = 0 for q ::::: n. Similarly, from the exactness of the homology 
sequence of the triple (Z,X,xo), it follows that i* is an isomorphism for q < n 
and an epimorphism for q = n if and only if Hq(Z,X) = 0 for q ::::: n. The 
result now follows from the relative Hurewicz isomorphism theorem 4. • 

6 CW COMPLEXES 

For homotopy theory the most tractable family of topological spaces seems to 
be the family of CW complexes (or the family of spaces each having the same 
homotopy type as a CW complex). CW complexes are built in stages, each 
stage being obtained from the preceding by adjoining cells of a given dimen­
sion. The cellular structure of such a complex bears a direct connection with 
its homotopy properties. Even for such nice spaces as polyhedra it is useful to 
consider representations of them as CW complexes, because such complexes 
will frequently require fewer cells than a simplicial triangulation. 

In this section we shall investigate CW complexes and related concepts. 
In Sec. 7.8 we shall show that any topological space can be approximated by 
a CW complex which is unique up to homotopy. We begin with some results 
about a space X obtained from a subspace A by adjoining n-cells (defined in 
Sec. 3.8). 

I LEMMA If X is obtained from A by ad;oining n-cells, then X X 0 U A X I 
is a strong deformation retract of X X I. 

PROOF For each n-cell ejn of X - A let 

+ .. (En Sn-l) ~ (e·n e·n) J J" J , J 

be a characteristic map. Let D: (En X I) X I ~ En X I be a strong deforma­
tion retraction of En X I to En X 0 U Sn-l X I (which exists, by corollary 
3.2.4). There is a well-defined map Dj : (ejn X 1) X I ~ ejn X I characterized 
by the equation 

Dj((fiz),t), t') = (fi X lI)(D(z,t,t')) z E En; t, t' E I 

Then there is a map D': (X X 1) X I ~ X X I such that D' I (ej X 1) X I = D j 

and D'(a,t,t') = (a,t) for a E A, and t, t' E I, and D' is a strong deformation 
retraction of X X I to X X 0 U A X I. • 

2 COROLLARY If X is obtained from A by ad;oining n-cells, then the 
inclusion map A C X is a cofibration. • 

3 LEMMA Let X be obtained from A by ad;oining n-cells and let (Y,B) be 
a pair such that 7Tn(Y,B,b) = 0 for all b E B if n 2 1 and such that every 
point of Y can be ;oined to B by a path if n = O. Then any map from (X,A) 
to (Y,B) is homotopic relative to A to a map from X to B. 
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PROOF This follows from theorem 7.2.1 by a technique similar to that in 
lemma 1 above. • 

A relative CW complex (X,A) consists of a topological space X, a closed 
subspace A, and a sequence of closed subspaces (X,A)k for k 2 0 such that 

(a) (X,A)O is obtained from A by adjoining O-cells. 
(b) For k 2 1, (X,A)k is obtained from (X,A)k-l by adjoining k-cells. 
(c) X = U (X,A)k. 
(rI) X has a topology coherent with {(X,A)k}k. 

In this case (X,A)k is called the k-skeleton of X relative to A. If X = (X,A)n 
for some n, then we say dimension (X - A) :::;; n. An absolute CW complex X 
is a relative CW complex (X, 0), and its k-skeleton is denoted by Xk. 

Following are a number of examples. 

4 If (K,L) is a simplicial pair, there is a relative CW complex (IKI,ILI), 
with (IKI,ILl)k = IKk U LI. 

:. If (X,A) is a relative CW complex, for any k the pair (X, (X,A)k) is a rela­
tive CW complex, with 

Similarly, the pair ((X,A)k, A) is a relative CW complex, with 

6 As in example 3.8.7, for i = 1, 2, or 4 let Fi be R, C, or Q, respectively, 
and for q 2 0 let Pq(Fi) be the corresponding projective space of dimension q 
over Fi . Then Pq(Fi) is a CW complex, with 

k :::;; iq 

k > iq 

7 En is a CW complex, with (En)k = po for k < n - 1, (En)n-l = Sn-l, 
and (En)k = En for k 2 n. 

8 I is a CW complex, with (1)0 = i and (1)k = I for k 2 1. 

9 If (X,A) and (Y,B) are relative CW complexes and either X or Y is locally 
compact, then (X,A) X (Y,B) is also a CW complex,l with 

((X,A) X (Y,B))k = Ui+j=k (X,A)i X (Y,B)j U X X B U A X Y 

10 If (X,A) is a relative CW complex, so is (X,A) X I, with 

(X X I, A X 1)k = (X,A)k X i U (X,A)k-l X I U A X I 

1 It is not true that the product of two CW complexes is always a CW complex. For a counter­
example, see C. H. Dowker, Topology of metric complexes, American Journal of Mathematics, 
vol. 74, pp. 555-577, 1952. 
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II If (X,A) is a relative CW complex, then XI A is a CW complex, with 
(XI A)k = (X,A)k I A. 

A subcomplex (Y,B) of a relative CW complex (X,A) is a relative CW 
complex such that Y is a closed subset of X and (Y,B)k = Y n (X,A)k for all k. 
If (Y,B) is a subcomplex of (X,A), then (X, A U Y) is a relative CW complex, 
with (X, A U Y)k = (X,A)k U Y for all k. In particular, if X is a CW complex 
and A is a subcomplex of X, then (X,A) is a relative CW complex. A CW pair 
(X,A) consists of a CW complex X and subcomplex A (hence a CW pair is a 
relative CW complex). 

The definition of relative CW complex suggests its inductive construction. 
We start with a space A, attach O-cells to A to obtain a space Ao, attach I-cells 
to A o to obtain AI, and continue in this way to define Ak for all k ::;> 0. 
Letting X be the space obtained by topologizing U Ak with the topology 
coherent with {Akh?o, then (X,A) is a relative CW complex, with (X,A)k = A k. 

12 THEOREM If (X,A) is a relative CW complex, then the inclusion map 
A C X is a cofibration. 

PROOF This follows from corollary 2, using induction and the fact that X X I 
has the topology coherent with {(X,A)k X Ih. • 

13 THEOREM Let (X,A) be a relative CW complex, with dimension 
(X - A) S; n, and let (Y,B) be n-connected. Then any map from (X,A) to 
(Y,B) is homotopic relative to A to a map from X to B. 

PROOF This follows, using induction, from corollary 7.2.2, lemma 3, and 
theorem 12. • 

14 COROLLARY Let (X,A) be a relative CW complex and let (Y,B) be 
n-connected for all n. Then any map from (X,A) to (Y,B) is homotopic rela­
tive to A to a map from X to B. 

PROOF Let f: (X,A) ~ (Y,B) be a map. It follows from theorems 12 and 13 
that there is a sequence of homotopies 

Hk : (X,A) X I ~ (Y,B) 

constructed by induction on k such that 

(a) Ho(x,O) = f(x) for x E X. 
(b) Hk(x,l) = Hk+1(X,O) for x E X. 
(c) Hk is a homotopy relative to (X,A)k-l. 
(d) Hk((X,A)k X 1) C B. 

Then a homotopy H: (X,A) X I ~ (Y,B) 
defined by 

with the required properties is 

( t - (1 - 11k) ) 
H(x,t) = Hk- 1 x, (11k) _ I/(k + 1) 

1 1 
I--<t<I--­

k- - k+I 

x E (X,A)k • 

15 LEMMA If X is obtained from A by adjoining n-cells, then for n ::;> 1, 
(X,A) is (n - I)-connected. 
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PROOF For k ~ n - 1 let f: (Ek,Sk-l) --') (X,A) be a map. Because f(Ek) is 
compact, there exist a finite number, say, e}, ... , em, of n-cells of X - A 
such that f(Ek) C el U ... U em U A. For 1 ~ i ~ m let Xi be a point of 
ei - ei. Each of the sets Y = A U (el - Xl) U ... U (em - xm) and ei - ei 
for 1 ~ i ~ m intersects f(Ek) in a set open in f(Ek). There is a simplicial 
triangulation of Ek, say K, such that (identifying IKI with Ek) for every 
simplex 8 E K either f(181) C Y or for some 1 ~ i ~ m, f(181) C ei - ei' Let A' 
be the subpolyhedron of Ek which is the space of all simplexes 8 E K such 
that f(181) C Y, and for 1 ~ i ~ m let Bi be the subpolyhedron which is the 
space of all simplexes 8 of K such that f(181) C ei - ei. Then Sk-l C A', 
Ek = A' U BI U ... U Bm, and if i =1= f, then Bi - A' is disjoint from 
Bj - A'. Let 13i = Bi n A' and observe that (Bi,13i) is a relative CW complex, 
with dim (Bi - 13i ) ~ k ~ n - 1. 

For 1 ~ i ~ m the pair ((ei - ei), (ei - ei) - Xi) is homeomorphic to 
(En - Sn-l, (En - Sn-l) - 0) and has the same homotopy groups as (En,Sn-l). 
By corollary 7.2.4, (En,Sn-l) is (n - I)-connected. It follows from theorem 13 
that f 1 (B;,13i) is homotopic relative to 13i to a map from Bi to (ei - ei) - Xi. 
Because Bi - 13i is disjoint from Bj - 13j for i =1= f, these homotopies fit 
together to define a homotopy relative to A' of f to some map f' such that 
f'(Ek) C Y. Clearly, A is a strong deformation retract of Y. Therefore f' is 
homotopic relative to Sk-l to a map f" such that f"(Ek) C A. Then 
f ~ f' ~ f", all homotopies relative to Sk-l. Therefore (X,A) is (n - 1)­
connected. • 

16 COROLLARY If (X,A) is a relative CW complex, then for any n 2:: 0, 
(X, (X,A)n) i8 n-connected. 

PROOF We prove by induction on m that ((X,A)m, (X,A)n) is n-connected for 
m> n. Since (X,A)n+1 is obtained from (X,A)n by adjoining (n + I)-cells, 
it follows from lemma 15 that ((X,A)n+1, (X,A)n) is n-connected. Assume 
m > n + 1 and that ((X,A)m-l, (X,A)n) is n-connected. By lemma 15, the pair 
((X,A)m, (X,A)m-l) is (m - I)-connected, and since n < m - 1, it is also 
n-connected. Then '1To((X,A)n) --') '1To((X,A)m-l) and '1To((X,A)m-l) --') '1To((X,A)m) 
are both surjective, whence '1To((X,A)n) --') '1To((X,A)m) is also surjective. 
Furthermore, for any X E (X,A)n, it follows from the exactness of the homotopy 
sequence of the triple ((X,A)m, (X,A)m-l, (X,A)n), with base pOint x, that 
'1Tk((X,A)m, (X,A)n, x) = 0 for 1 ~ k ~ n. By corollary 7.2.2, ((X,A)m, (X,A)n) 
is n-connected. 

To show that (X, (X,A)n) is n-connected, if 0 ~ k ~ n and a: (Ek,Sk-l) --') 
(X, (X,A)n), then because a(Ek) is compact and X has a topology coherent 
with the subspaces (X,A)m, there is m > n such that a(Ek) C (X,A)m. Hence 
a can be regarded as a map from (Ek,Sk-l) to ((X,A)m, (X,A)n) for some m > n. 
Because ((X,A)m, (X,A)n) is n-connected, a is homotopic relative to Sk-l to 
some map of Ek to (X,A)n. • 

Given relative CW complexes (X,A) and (X',A'), a map f: (X,A) --') (X',A') 
is said to be cellular if f((X,A)k) C (X',A')k for all k. Similarly, a homotopy 
F: (X,A) X I --') (X',A') is said to be cellular if F((X,A) X I)k C (X',A')k for 
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all k. Analogous to the simplicial-approximation theorem is the following 
cellular-approximation theorem. 

17 THEOREM Given a map f: (X,A) ~ (X',A') between relative CW com­
plexes which is cellular on a subcomplex (Y,B) of (X,A), there is a cellular map 
g: (X,A) ~ (X',A') homotopic to f relative to Y. 

PROOF It follows from corollary 16, theorem 13, and theorem 12 that there 
is a sequence of homotopies Hk: (X,A) X I ~ (X' ,A') relative to Y, for k ~ 0, 
such that 

(a) Ho(x,O) = f(x) for x E X. 
(b) Hk(x,I) = Hk+l(X,O) for x E X. 
(c) Hk is a homotopy relative to (X,A)k-l. 
(d) Hk((X,A)k X 1) C (X',A')k. 

Then a homotopy H: (X,A) X I ~ (X',A') 
defined by 

( t - (1 - 11k) ) 
H(x,t) = Hk- 1 x, (11k) _ I/(k + 1) 

with the desired properties is 

1 1 
1 - - < t < 1 - ---

k- - k+I 

H(x,I) = Hk(x,I) x E (X,A)k -

18 COROLLARY Any map between relative CW complexes is homotopic to 
a cellular map. If two cellular maps between relative CW complexes are 
homotopic, there is a cellular homotopy between them. -

A continuous map f: X ~ Y is called an n-equivalence for n ~ 1 if f 
induces a one-to-one correspondence between the path components of X and 
of Y and if for every x E X, f#: 7Tq(X,X) ~ 7Tq(Y,f(x)) is an isomorphism for ° < q < n and an epimorphism for q = n (the condition concerning the case 
q = n is sometimes omitted in the definitions occurring in the literature). 
A map f: X ~ Y is called a weak homotopy equivalence or oo-equivalence if 
f is an n-equivalence for all n ~ 1. The following results are immediate from 
the definition and from corollary 7.3.15. 

19 A composite of n-equivalences is an n-equivalence. -

20 Any map homotopic to an n-equivalence is an n-equivalence. -

2 I A homotopy equivalence is a weak homotopy equivalence. -

Let f: X ~ Y be a map and let Z, be the mapping cylinder of f. Then 
f = r 0 i, where r: Z, ~ Y is a homotopy equivalence. Therefore f is an 
n-equivalence if and only if i: X C Z, is an n-equivalence. It follows from the 
exactness of the homotopy sequence of (Z"X) and from corollary 7.2.2 that i 
is an n-equivalence if and only if (Z"X) is n-connected. 

22 THEOREM Let f: X ~ Y be an n-equivalence (n finite or infinite) and 
let (P,Q) be a relative CW complex, with dim (P - Q) ~ n. Given maps 
g: Q ~ X and h: P ~ Y such that h I Q = fog, there exists a map g': P ~ X 
such that g' I Q = g and fog' ~ h relative to Q. 
PROOF Let Z, be the mapping cylinder of f, with inclusion maps i: X C Z, 
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and j: Y C Zr, and retraction r: Zr ~ Ya homotopy inverse of j. Then in 

x ~ Zr 

a homotopy i 0 g ~ j 0 h I Q can be found whose composite with r is constant. 
By theorem 12, there is a map h': P ~ Zr such that h' I Q = i 0 g and such that 
r 0 h' ~ r 0 j 0 h relative to Q. We regard h' as a map from (P,Q) to (Zr,X). 
Since (Zr,X) is n-connected and dim (P - Q) ~ n, it follows from theorem 13 
that h' is homotopic relative to Q to some map g': P ~ X. Then g' I Q = g and 

fog' = r 0 i 0 g' ~ r 0 h' ~ r 0 j 0 h = h 

all the homotopies being relative to Q. Hence g' has the desired properties. • 

23 COROLLARY Let f: X ~ Y be an n-equivalence (n finite or infinite) and 
consider the map 

f#: [P;X] ~ [P;Y] 

If P is a CW complex of dimension ~ n, this map is surjective, and if 
dim P ~ n - 1, it is injective. 

PROOF The first part follows from theorem 22 applied to the relative 
CW complex (P, 0). 

For the second part, we apply theorem 22 to the relative CW complex 
(P X I, P X j). Given go, gl: P ~ X such that fogo ~ f 0 gl, there is a map 
g: P X j ~ X such that g(z,O) = go(z) and g(z,I) = gl(Z) for z E P and a map 
h: P X I ~ Y such that hiP X i = fog. Since dim (P X I) ~ n, by theorem 22 
there is a mapping g': P X I ~ X such that g' I P X j = g. Then g' is a 
homotopy from go to gl, showing that [go] = [gl]' • 

24 COROLLARY A map between CW complexes is a weak homotopy equiv­
alence if and only if it is a homotopy equivalence. 

PROOF It follows from statement 21 that a map which is a homotopy equiv­
alence is always a weak homotopy equivalence. Conversely, if f: X ~ Y is a 
weak homotopy equivalence between CW complexes, it follows from corol­
lary 23 that f induces bijections 

If g: Y ~ X is any map such that f#[g] = [lv]' then fog ~ lv, and also 

f#[g 0 fl = [f 0 g 0 fl = [lv 0 fl = [f 0 Ix] = f#[lx] 

Therefore [g 0 fl = [Ix] or g 0 f ~ lx, and so f is a homotopy equivalence. • 

Thus, for CW complexes the concepts of homotopy equivalence and weak 
homotopy equivalence coincide. The following theorem is a direct consequence 
of the Whitehead theorem 7.5.9. 
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25 THEOREM A weak homotopy equivalence induces isomorphisms of the 
corresputLding integral singular homology groups. Conversely, a map between 
simply connected spaces which induces isomorphisms of the corresponding 
integral singular homology groups is a weak homotopy equivalence. • 

7 HOMOTOPY FUNCTORS 

In this section we shall study a general class of functors on the homotopy 
category of path-connected pointed spaces. The main result characterizes, on 
the subcategory of CW complexes, those functors of the form 'TTy for some Y 
in terms of simple properties. In the next section we shall apply this result to 
prove the existence of approximations to any space by a CW complex. 1 

In a category 8, given objects A and X and morphisms fo: A ---) X and 
fl: A ---) X, an equalizer of fo and it is a morphism ;: X ---) Z such that 

(a) ; 0 fo = ; 0 it-
(b) If;': X ---) Z' is a morphism in 8 such that i' 0 fo = i' 0 it, there is a 
morphism g: Z ---) Z' such that i' = go;. 

Note that it is not asserted in condition (b) that g is unique. 
We define 80 to be the homotopy category of path-connected pointed 

spaces having nondegenerate base points. 

I LEMMA The category 80 has equalizers. 

PROOF Let A and X be arbitrary objects of 80 and let fo: A ---) X 
and it: A ---) X be maps preserving base points. Let Z be the space obtained 
from the topological sum X v (A X 1) by identifying (a,O) E A X I with 
fo(a) E X, (a,l) E A X I with fl(a) E X for all a E A, and (ao,t) E A X I with 
(ao,O) (ao the base point of A) for all tEl. Then Z is an object of 80 and the 
inclusion map ;: X C Z has the property that; 0 fo ':':0 ; 0 it [in fact, the com­
posite A X I C X v (A X I) ---) Z is a homotopy from ; 0 fo to ; 0 fll. 
Furthermore, if ;': X ---) Z' is a map such that i' 0 fo ':':0 i' 0 fl, there is a map 
G: X v (A X I) ---) Z' such that G I X = i' and G I A X I is a homotopy 
from i' 0 fo to i' 0 it- Then G is compatible with the collapsing map 
k: X v (A X I) ---) Z, so there is a map g: Z ---) Z' such that G = g 0 k. Then 
i' = go;, and therefore [; l: X ---) Z is an equalizer of [fol and [itl in t'O. • 

2 LEMMA Let {Yn}n2 0 be ob;ects of 80 that are subspaces of a space Yin 
80 such that Yn C Yn+l is a cafibration for all n Z 0, Y = Un Yn, and Y has 
the topology coherent with {Yn}. Let in: Yn C Yn+1, In: Yn C Yn, and 
in: Y n C Y be the inclusion maps. Then the homotopy class [{in} l: V Y n ---) Y 
is an equalizer in 80 of the homotopy classes 

1 The techniques of this section are based on E. Brown, Cohomology theories, Annals of 
Mathematics, vol. 75, pp. 467-484, 1962. 
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[V in]: V Yn ---7 V Yn and [V In]: V Yn ---7 V Yn 

PROOF Since in+1 0 in = in 0 In, it follows that Un} 0 V in = Un} 0 V In. 
Given a map i': V Yn ---7 Z' such that i' 0 V in ~ i' 0 V In, let i~: Yn ---7 Z' be 
defined by i~ = i'l Yn. Then i~+l 0 in ~ i~, and using the fact that Yn C Yn+1 
is a cofibration and by induction on n, there is a sequence of maps gn: Yn ---7 Z' 
such that gn ~ i~ and gn+1 0 in = gn' Let g: Y ---7 Z' be the map such that 
g I Y n = gn' If i = Un}: V Y n ---7 Y, then g 0 i ~ i' completing the proof. • 

A homotopy functor is a contravariant functor H from to to the category 
of pointed sets such that both of the following hold: 

(a) If [i]: X ---7 Z is an equalizer of [fol, [f11: A ---7 X and if u E H(X) is 
such that H([fo])u = H([h])u, there is v E H(Z) such that H([ i J)v = u. 
(b) If {X"h is an indexed family of objects in to and i,,: X" C V XI" 
there is an equivalence 

{H[i"lh: H(V X,,):::::: X H(X,,) 

If f: X ---7 Y is a base-poi nt-preserving map and H is a homotopy functor, 
we shall also use H(f) for H([fJ). If X C X' and u E H(X'), we use u I X for 
H(i )u, where i: X eX'. 

If X is a one-point space, and Xl and Xz are both equal to X, then 
Xl v Xz is also equal to X, and the equivalence of condition (b) 

{H(i1),H(iz)}: H(XI v Xz) :::::: H(Xl) X H(Xz) 

corresponds to the diagonal map of H(X) to H(X) X H(X). Because this is a 
bijection, H(X) consists of a single element. 

Following are some examples. 

a Let Y be a pOinted space. Then the functor '7TY on Co defined as in 
Sec. 1.3 (that is, '7TY(X) = [X; Yl for an object X in Co) is a homotopy functor. 

4 Fix an integer n > 0 and an abelian group G. Then the functor 
H(X) = Hn(X,xo; G) (singular cohomology) on t'o is a homotopy functor called 
the nth cohomology functor with coefficients G. 

5 Let G be an arbitrary group (possibly nonabelian). There is a homotopy 
functor H such that H(X) is the set of all homomorphisms '7Tl(X,XO) ---7 G with 
the trivial homomorphism as base point. 

An important result of this section is that on the subcategory of pointed 
path-connected CW complexes every homotopy functor is naturally equivalent 
to '7TY for a suitable pointed space Y. 

6 LEMMA Let v: SX ---7 SX V SX be the comultiplication map. If X is in 20 
and H is a homotopy functor, the composite 

H(SX) X H(SX) (H(il),H(i2)j-l) H(SX v SX) H(v\ H(SX) 

is a group multiplication on H(SX), which is abelian if X is a suspension. If H 
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is a homotopy functor taking values in the category of groups, the two group 
structures on H(SX) agree. 

PROOF Each of the group properties for this multiplication follows from the 
corresponding H cogroup property of P. The final statement of the lemma 
follows from theorem 1.6.8, because the two multiplications in H(SX) are 
mutually distributive. • 

In particular, for any homotopy functor H, H(Sq) is a group for q ~ 1 
and abelian for q ~ 2 and is called the qth coefficient group of H. Thus the 
qth coefficient group of the functor 'TTy of example 3 is 'TT q(Y). The qth coeffi­
cient group of the nth cohomology functor with coefficients G of example 4 
is 0 if q =I=- n and isomorphic to G if q = n. The qth coefficient group of the 
functor of example 5 is G if q = 1 and 0 if q > 1. 

If Y is an object of <?o and H is a homotopy functor, any element 
u E H(Y) determines a natural transformation 

Tu: 'TTy ~ H 

defined by Tu([f]) = H([f])(u) for [f] E [X; Y]. For a suspension SX, Tu is a 
homomorphism from 'TTY(SX) = [SX; Y] to the group H(SX), with the multipli­
cation of lemma 6 (because both group multiplications are induced by the 
co multiplication P: SX ~ SX v SX). An element u E H(Y) is said to be 
n-universal for H, where n ~ 1, if the homomorphism 

Tu: 'TTY(Sq) ~ H(Sq) 

is an isomorphism for 1 S q < n and an epimorphism for q = n. An element 
u E H(Y) is said to be universal for H if it is n-universal for all n ~ 1, in which 
case Y is called a classifying space for H. 

7 THEOREM Assume that H is a homotopy functor with universal elements 
u E H(Y) and u' E H(Y') and let f: Y ~ Y' be a map such that H(f)u' = u. 
Then f is a weak homotopy equivalence. 

PROOF Since Yand Y' are path connected, this is a consequence of the com­
mutativity of the diagram (for q ~ 1) 

[Sq; Y] f# 
~ [Sq; Y'] 

TS 7Tu' 

H(Sq) • 
The same kind of argument establishes the next result. 

8 LEMMA Let Y be an object of <?o and let Y' be an arbitrary path­
connected space. A map f: Y ~ Y' is a weak homotopy equivalence if and 
only if [f] E [Y; Y'] = 'TTY'(Y) is universal for 'TTY'. • 

We are heading toward a proof of the existence of universal elements for 
any homotopy functor. The following two lemmas will be used in this proof. 
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9 LEMMA Let H be a homotopy functor, Y an object in eo, and u E H(Y). 
There exist an object Y' in eo, obtained from Y by attaching I-cells, and a 
I-universal element u' E H(Y') such that u' I Y = U. 

PROOF For each "1\ E H(S1) let SAl be a I-sphere and define Y' = Yv V A SA 1. 

Then Y' is an object of ~o obtained from Y by attaching I-cells. If gA is the 
composite Sl:? SAl C Y', it follows from condition (b) on page 407 that there 
is an element u' E H(Y') such that u' I Y = u and H(gA)U' = "1\ for "1\ E H(S1). 
Since TU,([gA]) = "1\, Tu,([S1; Y'J) = H(S1), and u' is I-universal. -

10 LEMMA Let H be a homotopy functor and u E H(Y) an n-universal 
element for H, with n :;:: 1. There exist an object Y' in eo, obtained from Y by 
attaching (n + I)-cells, and an (n + I)-universal element u' E H(Y') such 
that u' I Y = U. 

PROOF For each "1\ E H(Sn+1) let SAn+1 be an (n + I)-sphere, and for each map 
0': Sn ~ Y such that H(a)u = 0 attach an (n + I)-cell ean+1 to Y by 0'. Let Y' 
be the space obtained from Yv V A SAn+1 by attaching the (n + I)-cells {ean+1}. 
Then Y' is an object of eo obtained from Y by attaching (n + I)-cells. 
If gA: Sn+l ~ Y V V A SA n+1 is the composite Sn+1 0::7 SA n+1 C Y V V A SA n+l, it 

follows from condition (b) on page 407 that there is an element 
u E H(Yv VA SAn+l) such that u I Y = u and H(gA)U ="1\ for "1\ E H(Sn+1). 

For each map 0': Sn ~ Y such that H(a)u = 0 let San be an n-sphere 
and let fo: Va San ~ Yv V A SAn+1 be the constant map and let f1: Va San ~ 
Yv V A SAn+1 be the map such that San is mapped by 0'. Then 

j: Yv V A SAn+1 C Y' 

is a map such that [j] is an equalizer of [fo] and [/1]. Since H(fo)u = 0 = 
H(f1)U, by condition (a) on page 407 there is an element u' E H(Y') such that 
H(f)u' = u. Then u' I Y = u and to complete the proof we need only show 
that u' is (n + I)-universal. 

There is a commutative diagram 

?Tq+1(Y',y) ~ ?Tq(Y) ~ ?Tq(Y') ~ ?Tq(Y',Y) 

T~ IT .. 
H(Sq) 

with the top row exact. Since Y' is obtained from Y by attaching (n + I)-cells, 
it follows from lemma 7.6.15 that ?T q( Y', Y) = 0 for q :::; n. Therefore i# is an 
isomorphism for q < n and an epimorphism for q = n. Since u is n-universal, 
T u is an isomorphism for q < n and an epimorphism for q = n. It follows 
that Tu' is also an isomorphism for q < n and an epimorphism for q = n. 
Furthermore, if a E [Sn; Y] is in the kernel of Tu, then a is represented by a 
map 0': Sn ~ Y and 

a = [0'] E 3(?Tn+l(ean+l,ean+1)) C 3(?Tn+1(Y',Y)) = ker i# 
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Therefore, for q = n, ker Tu = ker i#, and so Tu' is an isomorphism from 
'lTn(Y') to H(Sn). For any A E H(Sn+1) the map j 0 gA: Sn+l ~ Y' has the 
property that 

Tu'([ j 0 gAl) = H(gA)it = A 

showing that Tu' is an epimorphism for q = n + 1, and so u' is (n + 1)­
universal. -

II THEOREM Let H be a homotopy functor, let Y be an object in 20 , and 
let u E H(Y). Then there are a classifying space Y' for H containing Y such 
that (Y',Y) is a relative CW complex and a universal element u' E H(Y') such 
that u' I Y = u. 

PROOF Using lemmas 9 and 10, we construct, by induction on n, a sequence 
of objects {Yn}n~O in eo and elements Un E H(Yn) such that 

(a) Yo = Y and Uo = u. 
(b) Yn+1 is obtained from Yn by attaching (n + I)-cells, where n ~ O. 
(c) Un+l I Yn = Un· 
(d) Un is n-universal for n ~ l. 

It follows from (b) above that Y' = U Yn topologized with the topology 
coherent with {Yn } is a path-connected pointed space containing Y such that 
(Y',Y) is a relative CW complex. By lemma 2, the homotopy class 
[{in}]: V Yn ~ Y' is an equalizer of the homotopy classes [V in]: V Yn ~ V Yn 
and [V In]: V Yn ~ V Yn . By condition (b) on page 407 there is an element 
it E H(V Yn) such that it I Yn = Un. It follows from (c) above that H(V in)it = 
H( V In)it, and by condition (a) on page 407 there is an element u' E H(Y') 
such that H({jn})u' = it (that is, u' I Yn = Un for n ~ 0). Then u' I Y = u, and 
it remains to show that u' is universal. 

By the definition of Y' and u', there is a commutative diagram for q ~ 1 

lim~ {'lTq(Yn)} =? 'lTq(Y') 

(Tu.l\ ITu' 
H(Sq) 

Since Un is n-universal, TUn is an isomorphism for n > q, and so the left-hand 
map is an isomorphism. Therefore Tu' is also an isomorphism, and u' is 
universal. -

12 COROLLARY For any homotopy functor there exist classifying spaces 
which are CW complexes. 

PROOF Apply theorem 11 to a one-point space Y, with u the unique element 
of H(Y). -

13 COROLLARY Let u E H(Y) be a universal element for a homotopy 
functor H. Let (X,A) be a relative CW complex, where A and X are objects 
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in t'o. Given a map g: A ----) Y and an element v E H(X) such that v I A = H(g)u, 
there exists a map g': X ----) Y such that g = g' I A and v = H(g')u. 

PROOF Let i: X C X v Y and i': Y c X v Y and let ;: X v Y ----) Z be a map 
such that [il is an equalizer of [i 0 fl (where f: A C X) and [i' 0 g]. By condi­
tion (b) on page 407, there is an element v E H(X v Y) such that v I X = v 
and 13 I Y = u. Since H(f)v = H(g)u, it follows that H(i 0 f)13 = H(i' 0 g)v, 
and by condition (a) on page 407, there is an element u E H(Z) such that 
H(iJu = v. We now apply theorem 11 to 11 to obtain a Y' containing Z and a 
universal element u' E H( Y') such that 11 = u' I Z. Let i': Y ----) Y' be the 
composite 

r . h 

Y C Xv Y!...c, Z C Y' 

Then H(;')u' = u, and by theorem 7, i' is a weak homotopy equivalence. 
Since the composite 

f i . h 
A C X C X v Y ~ Z C Y' 

is homotopic to i' 0 g, it follows from the fact that f is a cofibration that there 
is a map g: X ----) Y' such that g I A = i' 0 g and g is homotopic to h 0 ; 0 i. 
Since i' is a weak homotopy equivalence, by theorem 7.6.22, there is a map 
g': X ----) Y such that g' I A = g and i' 0 g' ~ g. Then 

H(g')u = H(g')H(j')u' = H(i)H(i)H(h)u' = vi X = v 

showing that g' has the requisite properties. • 

14 THEOREM If Y is a classifying space and u E H(Y) is a universal 
element for a homotopy functor H, then for any CW complex X in eo, Tu is a 
natural equivalence of 7TY(X) with H(X). 

PROOF Given v E H(X), apply corollary 13, with A = Xo and g the constant 
map, to obtain a map g': X ----) Y such that H(g')u = v. Then Tu[g'] = v, 
proving that Tu is surjective. 

If go, gl: X ----) Yare maps such that Tu[go] = Tu[gl], let X' be the CW 
complex X X I/xo X I, with (X')q = [(Xq X 1) U (Xq-l X 1)JI(xo X 1) for 
q ::::: O. Let v E H(X') be defined by v = H(h)H(go)u, where h: X' ----) X is the 
map h([x,tJ) = x. Let A = X X j/xo X j and let g: A ----) Y be the map such 
that g([x,OJ) = go(x) and g([x,lJ) = gl(X). Then H(g)u = v I A, and by corol­
lary 13, there is a map g': X' ----) Y such that g' I A = g. Then the composite 

X X I ----) X X I/xo X I ~ Y 

is a homotopy relative to Xo from go to gl, showing that Tu is injective. • 

15 COROLLARY If Y and Y' are classifying spaces which are CW complexes 
and u E H( Y) and u' E H( Y') are universal elements for a homotopy functor H, 
there is a homotopy equivalence h: Y ----) Y', unique up to homotopy, such 
that H(h)u' = u. 
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PROOF By theorem 14, there exists a unique homotopy class [g]: Y ~ Y' 
such that H(g)u' = u. By theorem 7, g is a weak homotopy equivalence. By 
corollary 7.6.24, g is a homotopy equivalence. • 

8 WE.~K HOMOTOPY TYPE 

In this section we shall show that any space can be approximated by CW 
complexes. This leads to an equivalence relation based on weak homotopy 
equivalence which is weaker than homotopy equivalence. We shall also con­
sider the same equivalence relation in the category of maps. This will be used 
in defining and analyzing the general relative-lifting problem. 

A relative CW approximation to a pair (X,A) consists of a relative CW 
complex (Y,A) and a weak homotopy equivalence f: Y ~ X such that f(a) = a 
for all a E A. A CW approximation to a space X is a relative CW approxima­
tion to (X, 0). 

I THEOREM Any pair has relative CW approximations, and two relative 
CW approximations to the same pair have the same homotopy type. 

PROOF First we consider the case where X is path connected. Let xo E X 
and let {Aj} j E J be the set of path components of A, and for each i E J choose 
a point aj E Aj. There is a relative CW complex (A',A) with (A',A)O = A U eO, 
where eO is a single point and 

A' = (A',A)! = (A',A)O U U e/ 
JEJ 

where ejl is a I-cell such that e/ = eO U aj for i E J. Let g: A' ~ X be a map 
such that g(a) = a for a E A, g(eO) = Xo, and g I ejl is a path in X with end 
points Xo and aj for each i E J. Then A' is a path-connected space with non­
degenerate base point eO and [g] E '/TX(A'). It follows from theorem 7.7.11 
that there is a relative CW complex (Y,A') [which can be chosen such that 
(Y,A')! = A' v V S"l] and a universal element [g'] E '/TX(Y) for '/TX such that 
g' I A' ~ g. Since A' C Y is a cofibration, there is a map f: Y ~ X such that 
[f] E '/TX(Y) is universal for '/TX and f I A' = g. By lemma 7.7.8, f is a weak 
homotopy equivalence. Since (Y,A) is a relative CW complex [with (Y,A)O = 
(A',A)O and (Y,A)q = (Y,A')q for q 2': 1] and since f(a) = a for a E A, (Y,A) 
and f constitute a relative CWapproximation to (X,A). 

Next we consider the case where X is not path connected and we let 
{X,,} be the set of path components of X. By the case already considered, for 
each a there is a relative CWapproximation f,,: (Y", X" n A) ~ (X", X" n A). 
Let Y be the space obtained from the disjoint union A U U Y" by identifying 
x E Xa n A c Y" with x E A for each a and let k: A U U Ya ~ Y be the 
collapsing map. Then k I A: A ~ Y is an imbedding and (Y,A) is a relative 
CW complex with (Y,A)q = k(A U U (Y", X" n A)q) for all q 2': O. There is a 
map f: Y ~ X such that fk(a) = a for a E A and f 0 (k I Y,,) = f" for all a. 
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Since {k( Ya )} is the set of path components of Y and f induces a weak 
homotopy equivalence of each of these with the corresponding path compo­
nent Xa of X, f is a weak homotopy equivalence from Y to X. Identifying A 
with k(A), we see that (Y,A) and f constitute a CWapproximation to (X,A). 

Given two relative CW approximations to (X,A), say f1: (Y1,A) ~ (X,A) 
and fz: (Y2,A) ~ (X,A), it follows from theorem 7.6.22 that there are maps 
gl: (Y1,A) ~ (Y2,A) and g2: (Y2,A) ~ (Y1,A) such that fz 0 gl ~ it and 
it 0 g2 ~ fz, both homotopies relative to A. Then fz 0 (gl 0 g2) ~ fz 0 1 rel A, 
and by theorem 7.6.22 again, gl 0 g2 ~ 1 rel A. Similarly, g2 0 gl ~. 1 reI A, 
and so (Y1 ,A) and (Y2,A) have the same homotopy type. • 

Two spaces Xl and X2 will be said to have the same weak homotopy type 
if there exists a space Yand weak homotopy equivalences f1: Y ~ Xl and 
fz: Y ~ X2 • By replacing such a space Y with a CWapproximation to it, we 
see that Xl and X2 have the same weak homotopy type if and only if they 
have CW approximations by the same CW complex. 

2 LEMMA The relation of having the same weak homotopy type is an 
equivalence relation. 

PROOF The relation is reflexive and symmetric by its definition. To prove it 
transitive, let Xl, X2 , and X3 be spaces and let Y1 and Y2 be CW complexes 
such that there exist weak homotopy equivalences 

Y1 Y2 

tIl \12 gt 

Then fz: Y1 ~ X2 and g2: Y2 ~ X2 are both CWapproximations to X2 , and 
by theorem 1, there is a homotopy equivalence h: Y1 ~ Y2 such that 
fz ~ g2 0 h. Then g3 0 h: Y 1 ~ X3 , being the composite of weak homotopy 
equivalences, is a weak homotopy equivalence. Therefore Xl and X3 have the 
same weak homotopy type. • 

We are interested in applying these ideas to weak fibrations. The main 
result is that any two fibers of a weak fibration with path-connected base 
space have the same weak homotopy type. 

3 LEMMA Let p: E ~ B be a weak fibration with contractible base space B. 
For any bo E B the inclusion map i: p-1(bo) C E is a weak homotopy 
equivalence. 

PROOF Let F = p-1(bo). Since B is contractible, 'lTq(B,bo) = 0 for q 2:: O. 
From the exactness of the homotopy sequence of p, it follows that for any 
e E F, i induces an isomorphism i#: 'lTq(F,e) :::::: 'lTq(E,e) for q 2:: 1 and 
i#('lTo(F,e)) = 'lTo(E,e). 

It only remains to verify that i# maps 'lTo(F,e) injectively into 'lTo(E,e). 
Assume that e, e' E F are such that there is a path w in E from e to e'. 
Since B is simply connected and pow is a closed path in B at bo, there is a map 
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H: I X I ~ B such that H(t,O) = pw(t) and H(O,t') = H(I,t') = H(t,l) = boo 
Let g: I X 0 u i X I ~ E be the map defined by g(t,O) = w(t), g(O,t') = e, 
and g(l,t') = e'. By lemma 7.2.5, there is a map G: I X I ~ E such that 
po G = Hand G I I X 0 u i X I = g. Let w': I ~ E be the path defined by 
w'(t) = G(I,t). Then w' is a path in F from e to e' [because pw'(t) = bo], 
showing that i#: 'lTo(F,e) ~ 'lTo(E,e) is injective. -

4 COROLLARY Let p: E ~ B be a weak fibration and let w be a path in B. 
Then p-l(W(O)) and p-l(w(I)) have the same weak homotopy type. 

PROOF Let p':. E' ~ I be the weak fibration induced from p by w: I ~ B. 
Then p-l(w(O)) and p-l(w(I)) are homeomorphic to p'-l(O) and p'-l(I), 
respectively. By lemma 3, each of the inclusion maps p'-l(O) C E' and 
p'-l(l) C E' is a weak homotopy equivalence. The corollary follows from this 
and lemma 2. -

This result implies the following analogue of corollary 2.8.13 for weak 
fibrations. 

is COROLLARY If p: E ~ B is a weak fibration with path-connected base 
space, any two fibers have the same weak homotopy type. -

We now consider the category whose objects are continuous maps 
a: P" ~ P' between topological spaces and whose morphisms (also called 
map pairs) f: a ~ {3 are commutative squares 

P" ~ Q" 

aJ Jf1 
P' 4 Q' 

In this category a homotopy pair H: fo ~ /1, where fo, /1: a ~ {3, is a com­
mutative square 

P" X I H") Q" 

Jf1 
P' X I H' 

~Q' 

such that H": fg ~ f'{ and H': fo ~ f1 (note that H is a map pair from 
a X II to {3). If such a homotopy pair exists, fo is said to be homotopic to fl. 
This is an equivalence relation in the set of map pairs from a to {3, and the 
corresponding equivalence classes are called homotopy classes. We use [a;{3] 
to denote the set of homotopy classes of map pairs from a to {3, and if 
f: a ~ {3 is a map pair, its homotopy class is denoted by [f]. It is trivial to 
verify that the composites of homotopic map pairs are homotopic, so there is 
a homotopy category of maps whose objects are maps a: P" ~ P' and whose 
morphisms a ~ {3 are homotopy classes [f], where f: a ~ {3 is a map pair. 
A map pair f: a ~ {3 is called a homotopy equivalence from a to f3 if [f] is 
an equivalence in the homotopy category of maps. Two maps a and f3 are 
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said to have the same homotopy type if they are equivalent in the homotopy 
category of maps. 

Given a map pair g: a' ~ a (or a map pair h: {3 ~ {3') there is an induced 
map g#: [a;{3] ~ [a';{3] (or h#: [a;/3l ~ [a;{3'l) such that g#[fl = [f 0 g) (or 
h#[fl = [h 0 fl). Since g# 0 h# = h# 0 g#, the function which assigns [a;{3] to 
a and {3 and g# and h# to [g) and [h], respectively, is a functor of two 
variables from the product of the homotopy category of maps by itself to the 
category of sets that is contravariant in a and covariant in {3. 

If a: P" ~ P' and {3: Q" ~ Q' are maps, given a map f: P' ~ Q", there 
is a map pair p(f): a ~ {3 consisting of the commutative square 

P"~Q" 

at tf3 
P' ~Q' 

[that is, (p(f))" = f 0 a and (p(f))' = {3 0 j). Given a map pair f: a ~ {3, a 
lifting of f is a map f: P' ~ Q" such that p(f) = f. Two liftings fo, h P' ~ Q" 
of f: a ~ {3 are homotopic relative to f if there is a homotopy H: P' X I ~ Q" 
from fo to fl such that H 0 (a X II) and {3 0 H are both constant homotopies 
[that is, p(H) is the constant homotopy pair from f to fl. Such a map H is 
called a homotopy relative to f, and we write H: fo ~ fl reI f. Homotopy 
relative to f is an equivalence relation in the set of liftings of f, and the set of 
equivalence classes is denoted by [P';Q"]f. The relative-lifting problem is the 
study of [P';Q"]f (for example, do liftings of f exist, and if so, how many 
homotopy classes relative to f of liftings of f are there?). 

6 EXAMPLE If P" is empty, then a map pair f: a ~ {3 consists of a map 
f': P' ~ Q', and a lifting f: P' ~ Q" of f is a lifting of f' to Q" in the sense 
defined in Sec. 2.2. In this case, if {3 is a fibration, two liftings fo, fl: P' ~ Q" 
of f' are homotopic relative to f if and only if they are fiber homotopic in the 
sense of Sec. 2.8. Thus the absolute-lifting problem is a special case of a 
relative-lifting problem. 

7 EXAMPLE If a is an inclusion map and Q' is a one-point space, then a 
map pair f: a ~ {3 corresponds bijectively to a map f": P" ~ Q" and a 
lifting f: P' ~ Q" of f corresponds bijectively to an extension of f" to P'. In 
this case two extensions fo, fl: P' ~ Q" are homotopic relative to f (as liftings) 
if and only if they are homotopic relative to P". Thus the extension problem 
is a special case of a relative-lifting problem. 

8 EXAMPLE Let fo, h P' ~ Q" be liftings of a map pair f: a ~ {3. Let 
R' = P' X I and let R" be the quotient space of the disjoint union of P' X j 
and P" X I by the identifications (z",O) E P" X I equals (a(z"),O) E P' X j and 
(z",I) E P" X I equals (a(z"),I). Define a map y: R" ~ R' by y(z",t) = (a(z"),t) 
for (z",t) E P" X I and y(z',t) = (z',t) for (z',t) E P' X i. There is a map pair 
g: y ~ {3 consisting of the maps g": R" ~ Q" and g': R' ~ Q' such that 
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g"(z",t) = f"(zll) for (z",t) E P" X I, g"(z',O) = lo(z') and g"(z',I) = 11(z') for 
z' E P', and g'(z',t) = f'(z') for (z',t) E P' X 1. Then 10 and 11 are homotopic 
relative to f if and only if there exists a lifting of g. 

We are particularly interested in the relative-lifting problem in case a is 
the inclusion map of a relative CW complex and f3 is a weak fibration. Thus, 
if i: A C X is an inclusion map and p: E ~ B is a weak fibration, a map pair 
f: i ~ P consists of a map f': X ~ B and a lifting f": A ~ E of f' I A. 
A lifting I of f is a lifting of f' to E, which is an extension of f". Two liftings 
of f are homotopic relative to f if and only if there is a fiber homotopy rela­
tive to A between them. The following relative homotopy extension theorem 
is the main reason for giving particular attention to this case. 

9 THEOREM Let (X,A) be a relative CW complex, with inclusion map 
i: A C X, and let p: E ~ B be a weak fibration. Given a map f: X ~ E and 
a homotopy pair H: i X I] ~ P consisting of a homotopy H': X X I ~ B 
starting at pol and a homotopy H": A X I ~ E starting at I 0 i, there is a 
homotopy H: X X I ~ E starting at f such that H' = P 0 Hand 
H" = H 0 (i X I]). 

PROOF Let g: X X 0 U A X I ~ E be the map defined by g(x,O) = f(x) for 
x E X and g(a,t) = H"(a,t) for a E A and t E 1. Then H' is an extension of 
p 0 g, and by the standard stepwise-extension procedure over the successive 
skeleta of (X,A) (applied to polyhedral pairs in the proof of theorem 7.2.6 and 
equally applicable to any relative CW complex), there is a map H: X X I ~ E 
such that p 0 Ii = H' and Ii I X X 0 U A X I = g. Then H has the desired 
properties. • 

Let us reinterpret this last result. A map pair f: i ~ P is a commutative 
square 

A4E 

i~ ~P 

X4B 

Therefore, if we let EX X' EA denote the fibered product of the map EX ~ BA 
induced by restriction and the map EA ~ BA induced by p, the pair (f',!") 
is a point of EX X' EA. In this way the set of map pairs f: i ~ P is identified 
with the fibered product EX X' EA. The map p corresponds to a map 
p: EX ~ EX X' EA, and [X;E]f is the set of path components of p-l(f). 

10 COROLLARY Let (X,A) be a relative CW complex with X locally com­
pact Hausdorff, with inclusion map i: A C X, and let p: E ~ B be a weak 
fibration. Then p: EX ~ EX X' EA is a weak fibration. 

PROOF Given a map g: In ~ EX and a homotopy H: In X I ~ EX X' EA 
starting with p(g), the exponential correspondence assigns to g a map 
g: X X In ~ E and to H a homotopy pair HI from (i X Id X I] to p, start-
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ing with p(g). By theorem 9, there is a homotopy HI: X X In X I ~ E 
starting with g such that p(H1 ) = HI. Then the exponential correspondence 
associates to HI a map G: In X I ~ EX starting with g such that p 0 G = H. • 

It follows from corollaries 10 and 4 that if fo, fl: i ~ P are homotopic 
map pairs with X locally compact Hausdorff, then [X;E]ro and [X;E]rl are in 
one-to-one correspondence. Thus the relative-lifting problem for fo is equiva­
lent to the relative-lifting problem for ft. 

Given weak fibrations PI: El ~ Bl and P2: E2 ~ B2, a map pair 
g: PI ~ P2 is called a weak homotopy equivalence if gil: El ~ E2 and 
g': Bl ~ B2 are weak homotopy equivalences. We shall show that a weak 
homotopy equivalence in the category of maps has much the same properties as 
a weak homotopy equivalence in the category of spaces. The following ana­
logue of theorem 7.6.22 is our starting point. 

II LEMMA Let (X,A) be a relative CW complex, with inclusion map 
i: A C X, and let g: PI ~ P2 be a weak homotopy equivalence between weak 
fibrations. Given a map pair f: i ~ PI and a lifting Ii: X ~ E2 of the map 
pair g 0 f, there is a lifting f: X ~ El of f such that gil 0 f and Ii are homo­
topic relative to g 0 f. 

PROOF The proof involves two applications of theorem 7.6.22 and then two 
applications of theorem 9. We shall not make specific reference to these 
when they are invoked. 

We have a commutative diagram 

A 4 El ~ E2 

X 4 Bl ~ B2 

in which gil and g are weak homotopy equivalences, and we are given a map 
Ii: X ~ E2 such that Ii 0 i = g" 0 f" and P2 0 Ii = g 0 f'. The!! there is a 
map 1: X ~ E1_such that J 0 i = f" and a homotopy Gil: g" 0 f ~ Ii reI A. 
The maps PI 0 f and f' agree on A and P2 0 Gil is a homotopy relative to A 
from g'.o PI 0 J = P2 0 g" 0 J to g' 0 f' = P2 0 Ii. Therefore there is a homotopy 
F': PI 0 J ~ f' reI A and a homotopy H': g' 0 F' ~ P2 0 G" reI A 0 I U X X i. 

Let F": X X I ~ El be a lifting of F' such that F"(x,O) = f(x) for x E X 
and F"(a,t) = f"(a) for a E A and tEl. Define f: X ~ El by j(x) = F"(x,l). 
We show that f has the desired properties. It is clearly a lifting of f. _ 

The maps g" 0 F" and G" are homotopies relative to A from gil 0 f to 
gil 0 f and to Ii, respectively, and H' is a homotopy from P2 0 g" 0 F" to P2 0 G" 
reI A X I U X X 1. Since there is a homeomorphism of (X X I X I, A X I X I) 
onto itself taking X X (I X i U 0 X I) onto X X I X 0, there is a lifting H" 
of H' which is a homotopy from g" 0 F" to G" reI X X 0 U A X I. Then 
the map H: X X I ~ E2 defined by H(x,t) = H"(x,l,t) is a homotopy from 
gil 0 f to h relative to g 0 f. • 

This gives us the following important result. 
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12 THEOREM Let (X,A) be a relative CW complex, with inclusion map 
i: A C X, and let g: PI -7 P2 be a weak homotopy equivalence between weak 
fibrations. Given a map pair f: i -7 PI, the map pair g induces a biiection 

g'#: [X;Ell f ::::: [X;E21g o f 

PROOF The fact that g,# is surjective follows immediately from lemma 11. 
The fact that g,# is injective follows from application of lemma 11 to the rela­
tive CW complex (X,A) X (I,i). • 

EXERCISES 

A EXACTNESS OF HOMOTOPY SETS 

1 Assume that i: (X,N) C (X,A) is a cofibration, where A and X' are closed subsets of 
X and N = A n X. Prove that the collapsing map 

(Cy,Cd ~ (Cy,Cd/CX = (X,A)/X = (X/X, A/A') 

is a homotopy equivalence. 

2 With the same hypotheses as in exercise 1, let g': (X,A) ~ C(X,A') be any map such 
that g'(x') = x' for x' E X and let g: (X/X',A/ A') ~ S(X,A') be the map such that the 
following square is commutative, where k' and k" are the collapsing maps: 

(X,A) £. C(X',A') 

k'l lk" 
(X/X,A/A') -4 S(X,A') 

Prove that there is a co exact sequence 

(X',A') ~ , . , ~ sn(X',A') §:'4 sn(X,A) ~ Sn(x/x', A/A') .§:.4 , .. 

3 If (X,A) is a relative CW complex, prove that there is a coexact sequence 

A C X ~ X/A ~ SA C SX ~ ... ~ SnA C SnX ~ ... 

B HOMOTOPY GROUPS 

1 If A is a retract of X, prove that there is an isomorphism 

n>2 

2 If X is defonnable into A relative to Xo E A, prove that there is an isomorphism 

'1Tn(A,xo) :::::: '1Tn(X,xo) EB '1Tn+l(X,A,xo) n 2': 2 

3 If p: E ~ B is a weak fibration such that the fiber F = p-l(bo) is contractible in E 
relative to eo E F, prove that there is an isomorphism 

n2':2 

4 If p: E ~ B is a weak fibration which admits a section, prove that there is an iso­
morphism for eo E F = p-l(bo) 

'1Tn(E,eo) :::::: '1Tn(B,bo) EB '1Tn(F,eo) n 2': 2 



EXERCISES 419 

:; Let {Xj} be an indexed family of spaces with base points Xj E Xj. Prove that there is 
an isomorphism 

n;::::O 

6 Given X v Y = X X yo U Xo X Y C X X Y, prove that there is an isomorphism 

7Tn(X V Y, (xo,yo)) ::::: 7Tn(X,XO) EB 7Tn(Y,yO) EB 7Tn+1(X X Y, X v Y, (xo,yo)) 

C BASE POINTS1 

I Give an example of a degenerate base point. 

2 If X and Y have nondegenerate base points, prove that also X v Y, X X Y, and 
X X Y IX v Y have nondegenerate base points. 

3 If (X,xo) and (Y,yo) have the same homotopy type, prove that Xo is a nondegenerate 
base point of X if and only if yo is a nondegenerate base pOint of Y. 

" Prove that any space has the same homotopy type as some space with a nondegen­
erate base point. 

:; Let X and Y be path-connected spaces with nondegenerate base points Xo and yo, 
respectively. Prove that X and Y have the same homotopy type if and only if (X,xo) and 
(Y,yo) have the same homotopy type. 

D THE WHITEHEAD PRODUCT 

Let p ;:::: 1 and q ;:::: 1 and let h: (lp+q,ip+q) ~ (lP,ip) X (JQ,iq) be the homeomorphism 
h(tt, ... ,tP+Q) = ((t1, ... ,tp),(tv+t, ... ,tp+q)). Then h determines an element 
[h] E 7Tp+q((lP,iP) X (Iq,iq), (0,0)) and an element 

1/p,q = o[h] E 7Tp+q_1(IP X jq U jp X Iq, (0,0)) 

Given maps a: (IP,iP) ~ (X,xo) and 13: (Iq,jq) ~ (X,xo), 
y: (IP X jq U jp X Iq, (0,0)) ~ (X,xo) by 

{ a(z) 
y(z,z') = f3(z') 

z' E jq, (z,z') E Ip X Iq 
z E jp, (z,z') E Ip X Iq 

define a map 

I Prove that Y#(1/p,q) E 7Tp+Q_1(X,XO) depends only on [a] and [13], It is called the 
Whitehead product of [a] and [13] and is denoted by [[a],[f3]] E 7Tp+Q_1(X,XO)' 

2 Prove that if p = q = 1, then [[a],[f3]] = [a][f3][a]-l[f3]-l. 

3 If p > 1 and q = 1, prove that [[a],[f3]] = [a]h[~]([a]-l). 

" If P + q > 2, prove that [[a],[f3]] = (-l)pq[[f3],[a]]. 

:; Iff: (X,xo) ~ (Y,yo), prove thatf#[[a],[f3]] = U#[a],f#[f3]]· 

6 If w is a path in X, prove that h[OJ][[a],[I3]] = [h[OJ][a],h[OJ][I3]]. 

7 Prove that [[a],[f3]] = 0 if and only if there is a map f: Ip X Iq ~ X such that 

f(t h )={a(t1"" ,tp)iff!=Oorlforsomep+1:S;i:S;p+q 
h···, p+q f3(tp+h'" ,tp+q)iff!=Oorlforsomel:S;i:S;p 

8 If X is an H space, prove that [[a],[f3]] = 0 for all [a] and [13]. 

1 See D. Puppe, Homotopiemengen und ihre induzierten Abbildungen. I, Mathematische 
Zeitschriften, vol. 69, pp. 299-344, 1958. 
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9 Prove that Sn is an H space if and only if [[a],[,8]] = 0 for all [a], [,8] E 'lTn(sn). 

E CW COMPLEXES 

I If (X,A) is a relative CW complex, prove that X has a topology coherent with the 
collection {A} u {e I e a cell of X - A}. 

2 If (X,A) is a relative CW complex, prove that X is compactly generated if and only 
if A is compactly generated. 

3 If (X,A) is a relative CW complex and A is paracompact, prove that X is paracompact. 

4 If (X,A) is a relative CW complex and A has the same homotopy type as a CW com­
plex, prove that X has the same homotopy type as a CW complex. 

:; Prove that a CW complex is locally contractible. 

6 Prove that a CW complex has the same homotopy type as a polyhedron. 

F ACTION OF THE FUNDAMENTAL GROUP 

I Prove that the real projective n-space pn is simple if and only if n is odd. 

2 For 1 < n < m show that pzn+1 X S2m+1 and pzm+1 X S2n+1 are simple compact 
polyhedra having isomorphic homotopy groups in all dimensions, but are not of the same 
homotopy type. 

3 Let (Z,Z) be an (n - I)-connected CW pair, with n ;:: 2, such that Z is simply con­
nected. Let (X* ,X) be the adjunction space obtained by adjoining Z to a CW complex X 
by a map f: (Z,zo) ~ (X,xo) and let g: (Z,Z,zo) ~ (X* ,X,xo) be the canonical map. Prove 
that (X* ,X) is (n - I)-connected and that the map 

(fl ['lTn(Z,Z,zo)hw] ~ 'lTn(X* ,X,xo) 
[wlE"'l (X,Xo) 

sending [aJrw] to h[w](g#[a]) for [a] E 'lTn(Z,Z,Zo) is an isomorphism. [Hint: Let X be the 
universal covering space of X and let {f[w]: Z ~ X}[w] E"" (X,Xo) be the set of liftings of f. 
Show that the space X * obtained by attaching a copy of Z to X for each map few] is the 
universal covering space of X*. Then use the fact that 'lTq(X* ,X) ;::::; 'lTq(X* ,X) and com­
pute 'lTn(X* ,X) by the Hurewicz theorem.] 

4 Let X be the CW complex obtained from Sl v S2 by attaching a 3-cell by a map 
representing 2[a] - h[w][a], where [a] is a generator of 'lT2(S2) and [w] is a generator of 
'lT1(Sl). Prove that the inclusion map Sl C X induces an isomorphism of the fundamental 
groups and all homology groups but not of the two-dimensional homotopy groups. 

G CW APPROXIMATIONS 

I If (X,A) is an arbitrary pair, prove that there is a CW pair (X',N) and a map 
f: (X',A') ~ (X,A) such that f I X': X' ~ X and f I A': A' ~ A are both weak homotopy 
equivalences. 

2 If h: Xl ~ Y1 and fz: X2 ~ Y2 are weak homotopy equivalences, prove that 
h X fz: Xl X X2 ~ Y1 X Y2 is also a weak homotopy equivalence. 

3 If h: Xl ~ Y1 and fz: X2 ~ Y2 are weak homotopy equivalences, show by an 
example that f1 v fz: Xl v X2 ~ Y1 V Y2 need not be a weak homotopy equivalence. 

4 Show by an example that a weak homotopy equivalence need not induce isomor­
phisms of the corresponding Alexander cohomology groups. 

:; If X is simply connected and H. (X) is finitely generated, prove that X has the same 
weak homotopy type as some finite CW complex. 
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6 A space X is said to be dominated by a space Y if there exist maps f: X ~ Y and 
g: Y ~ X such that g 0 f ~ Ix. Prove that a space is dominated by a CW complex if and 
only if it has the same homotopy type as some CW complex. 

H GROUPS OF HOMOTOPY CLASSES 

Throughout this group of exercises it is assumed that Y is (n - I)-connected, where 
n 2 2, with base pOint Yo, and that X is a CW complex of dimension ::;: 2n - 2. 

I Prove that any map X ~ Y is homotopic to a map sending Xn-l to yo and that if 
f, g: (X,xn-l) ~ (Y,Yo) are homotopic as maps from X to Y, they are homotopic relative 
to Xn-Z. 

2 Prove that the diagonal map d: X ~ X X X is homotopic to a map d' such that 
d'(X) C (X X xn-z) U (xn-Z X X). Prove that maps d', d": X ~ (X X Xn-Z) U (Xn-Z X X) 
which are homotopic in X X X are homotopic in (X X xn-l) U (xn-l X X). (Hint: Use 
the cellular-approximation theorem.) 

Let d': X ~ (X X xn-Z) U (xn-Z X X) be homotopic in X X X to the diagonal 
map. Given f, g: X ~ Y, let!" g': (X,Xn-l) ~ (Y,yo) be homotopic to f and g, respec­
tively. Then (f' X g') 0 d': X ~ Y X Y maps X into Yv Y. Let y: Yv Y ~ Y be defined 
by y(y,yo) = y = Y(Yo,Y)· 

3 Prove that [y 0 (f' X g') 0 d'] depends only on [fl and [g] and that the operation 
[fl + [g] = [y 0 (f' X g') 0 d'] is associative, commutative, and has a unit element, 
making [X;Y] into a commutative semigroup with unit. 

4 Prove that if g: Y ~ Y', where Y' is also (n - I)-connected (or if h: X' ~ X, where 
X' is a CW complex of dimension::;: 2n - 2), then ~: [X; Y] ~ [X; Y'] is a homomor­
phism (or h#: [X; Y] ~ [X'; Y] is a homomorphism). 

5 The semigroup [X;Y] is a group. (Hint: Use induction on the dimension of X, the 
fact that [Xk+I/Xk;Y] is a group for any k and any Y, because Xk+l/Xk, being a wedge 
of (k + I)-spheres, is a suspension, and the exactness of the sequence of homomorphisms 

[Xk+1/Xk; Y] ~ [Xk+l; Y] ~[Xk; Y] [X'; Y] 

where X' is a disjoint union of k spheres, one for each (k + I)-cell of X.) 

In case Y = Sn and dimension X::;: 2n - 2, the group [X;Sn] is called the nth 
cohomotopy group of X,l denoted by 'IT"(X). 

I MISCELLANEOUS 

I Let 0': '1Tn+1(~n+1,.in+1,vo) ~ '1Tn(.in+l,(~n+1)n-l,vo) if n 2 2 and let 

0': '1T2(~z,.iz,vo) ~ '1TI(.iz,VO) 

if n = 1. Prove that O'[~n+l] = bn for n 2 I (see page 394 for definition of bn). 

2 Let H be a homotopy functor and let f: X ~ Y be a base-point-preserving map 
between path-connected spaces, with nondegenerate base points. Prove that the sequence 

H(C,) ~ H(Y) ~ H(X) 

is exact. 

3 If H is a homotopy functor and (X,A) is a CW pair, prove that there is an exact 
sequence 

H(A) ~ H(X) ~ H(X/A) ~ H(SA) ~ ... ~ H(SnA) ~ ... 

1 For more details see E. Spanier, Borsuk's cohomotopy groups, Annals of Mathematics, vol. 50, 
pp. 203-245, 1949. 



CHAPTER EIGHT 

OBSTRUCTION THEORY 



IN THIS CHAPTER WE DEVELOP OBSTRUCTION THEORY FOR THE GENERAL LIFTING 

problem. A sequence of obstructions is defined whose vanishing is necessary 
and sufficient for the existence of a lifting. The kth obstruction in the sequence 
is defined if and only if all the lower obstructions are defined and vanish, in 
which case the vanishing of the kth obstruction is a necessary condition for 
definition of the (k + l)st obstruction. 

We begin by applying the general theory of homotopy functors to study 
the set of homotopy classes of maps from a CW complex to a space with 
exactly one nonzero homotopy group and we show that a suitable cohomology 
functor serves to classify maps up to homotopy in this case. This result is then 
used to obtain a solution, in terms of cohomology, of the lifting problem for a 
fibration whose fiber has exactly one nonzero homotopy group. 

With this in mind, we then consider the problem of factorizing an arbi­
trary fibration into simpler ones each of which has a fiber with exactly one 
nonzero homotopy group. We show that such factorizations do exist for a 
large class of fibrations, and that when they exist, a sequence of obstructions 
can be associated to the factorization. These obstructions are subsets of coho-

423 
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mology groups, and we apply the general machinery to some special cases 
where, because of dimension restrictions, the only obstructions which enter 
are either the first one or the first two. For the case of only one obstruction 
we obtain the Hopf classification theorem. 

Finally, we prove the suspension theorem, which we use to compute the 
(n + l)st homotopy group of the n-sphere. Combining this with the technique 
of obstruction theory, we obtain a proof of the Steenrod classification theorem. 

Section 8.1 is devoted to spaces with exactly one nonzero homotopy 
group. We prove tqat a suitable cohomology functor serves both to classify 
maps from a CW complex to such a space and to provide a solution for the 
extension problem for maps involving a relative CW complex and such a space. 
We use this result to derive the Hopf extension and classification theorems for 
maps of an n-dimensional CW complex to Sn. Section 8.2 deals with fibrations 
whose fiber has exactly one nonzero homotopy group, and again it is shown 
that a suitable cohomology functor serves to provide a solution for the lifting 
problem and to classify liftings of a given map. 

In Sec. 8.3 we prove that many fibrations can be factored as infinite 
composites of fibrations each of which has a fiber with exactly one nonzero 
homotopy group. The corresponding lifting problem is then represented as an 
infinite sequence of simpler lifting problems. In Sec. 8.4 we show how to 
define obstructions inductively for such a sequence of fibrations, and how to 
apply the resulting machinery. 

In Sec. 8.5 we shall study the suspension map and prove the exactness 
of the Wang sequence of a fibration with base space a sphere. This result is 
used to prove the suspension theorem, which is applied to compute 17n+l(Sn) 
for all n. We then prove the Steenrod classification theorem for maps of an 
(n + I)-dimensional CW complex to Sn. 

I EILENBERG-MACLANE SPACES 

This section is devoted to a study of spaces with exactly one nonzero homotopy 
group. Such spaces are classifying spaces for the cohomology functors, and 
because of this, there is an important relation between the cohomology of 
these spaces and cohomology operations. At the end of the section we shall 
apply the results to derive the Hopf classification and extension theorems. 
Then, later in the chapter, we shall study arbitrary spaces by representing 
them as iterated fib rations whose fibers are spaces with exactly one nonzero 
homotopy group. Thus, these homotopically simple spaces serve as building 
blocks for more complicated spaces. 

Let 17 be a group and let n be an integer ~ 1. A space of type (17,n) is a 
path-connected pointed space Y such that 17q(Y,yo) = 0 for q =1= nand 
17n(Y,yo) is isomorphic to 17. An Eilenberg-MacLane space1 is a path-connected 
pointed space all of whose homotopy groups vanish, except possibly for a 

1 See S. Eilenberg and S. MacLane, On the groups H(7T,n), I, Annals of Mathematics, vol. 58, 
pp. 55-106, 1953. 
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single dimension. Thus a space of type ('7T,n) is an Eilenberg-MacLane space. 
Conversely, if Y is an Eilenberg-MacLane space and '7Tq(Y,Yo) = 0 for q 0:/== n, 
then Y is a space of type ('7Tn(Y,yo), n). Let us consider a few examples. 

I It follows from corollary 7.2.12 that Sl is a space of type (Z,I). 

2 Let px be the CW complex which is the union of the sequence 
p1 C p2 C . .. topologized by the topology coherent with the collection 
{Pi}i21' Then '7Tq(PX) ~ lim~ {'7Tq(Pi)}, and it follows from application of corol­
lary 7.2.11 to the covering Sn ~ pn that poc is a space of type (Z2,l). 

3 Let P x(C) be the CW complex which is the union of the sequence 
P1(C) C P2(C) c ... topologized by the topology coherent with the collec­
tion {Pi (C)}i21. Then '7Tq(Px(C)) ~ lim~ {'7Tq(PiC))}, and it follows from 
corollary 7.2.13 that P x(C) is a space of type (Z,2). 

Let '7T be an abelian group and Y a path-connected pointed space. 
An element v E Hn( Y, yo; '7T) is said to be n-characteristic for Y if the composite 

'7Tn(Y,Yo) ~ Hn(Y,yo) ~ '7T 

is an isomorphism (where <p is the Hurewicz homomorphism and h is the 
homomorphism defined in Sec. 5.5). If Y is (n - I)-connected, it follows from 
the absolute Hurewicz isomorphism theorem and the universal-coefficient 
theorem for cohomology that there is an n-characteristic element 
v E Hn(Y,yo; '7T) if and only if '7T ~ '7Tn(Y,yo). Such an element is unique up to 
automorphisms of '7T. In particular, a space Y of type ('7T,n) with '7T abelian has 
n-characteristic elements v E Hn(Y,yo; '7T). 

4 LEMMA Let u E Hn(Y,yo; G) be a universal element for the nth coho-
mology functor with coefficients G, where n ;:::: 1. Then Y is a space of type 
(G,n) and u is n-characteristic for Y. 

PROOF By theorem 7.7.14, there are isomorphisms 

q;:::: 1 

Therefore '7Tq(Y,yo) = 0 if q 0:/== n, and Tu: '7Tn(Y,yo) ~ Hn(Sn,po; G). If 
a: (Sn,po) ~ (Y,yo), then Tu([a]) = a* (u), and there is a commutative diagram 

'7Tn(Sn,po) ~ Hn(Sn,po) 

"=1 
\. h(a*(u)) = h(Tu[a]) 

G 

/' h(u) 

'7Tn(Y,yo) ~ Hn(Y,yo) 

Let v: Hn(Sn,po; G) ~ G be the isomorphism defined by 

v(v) = h(v)(<p[lsn]) 

From the commutativity of the diagram above, 
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It follows that h(u) 0 cp equals the composite 

'TTn(Y,yo) ~ Hn(Sn,po; G) it G 

and so is an isomorphism. Therefore Y is a space of type (G,n) and u is 
n-characteristic for Y. • 

:; COROLLARY Given n ;::0: 1 and a group 'TT (abelian if n > 1), there exists 
a space of type ('TT,n). 

PROOF If 'TT is abelian, it follows from lemma 4 that any classifying space for 
the nth cohomology functor with coefficients 'TT is a space of type ('TT,n). 
If n = 1 and 'TT is arbitrary, it is easy to see that a classifying space for the 
homotopy functor of example 7.7.5 which assigns to a pointed path-connected 
space X the set of homomorphisms 'TTl(X,XO) ~ 'TT is a space of type ('TT,l). In 
either case, since any homotopy functor has a classifying space by corollary 
7.7.12, the result follows. • 

6 COROLLARY Let {'TTn}n~l be a sequence of groups which are abelian for 
n > 2. There is a space X, with base point Xo, such that 'TTn(X,xo) ::::; 'TTn 
for n ;::0: 1. 

fROOF By corollary 5, for each n ;::0: 1 there is a space Y n, with base point Yn, 
such that 'TTq(Yn,Yn) = 0 for q =1= nand 'TTn(Yn,Yn) ::::; 'TTn. Then the product 
space X Yn with base point (Yn) has the desired properties. • 

The last result can be strengthened so that if 'TTl acts as a group of oper­
ators on 'TTn for every n ;::0: 2, then the sequence is realized as the sequence of 
homotopy groups of a space X in such a way that the action of 'TTl on 'TT n cor­
responds to the action of 'TTl(X,XO) on 'TTn(X,xo) of theorem 7.3.8. 

7 LEMMA Let F: H ~ H' be a natural transformation between homotopy 
functors which induces an isomorphism of their qth coefficient groups for 
q < n and a surjection of their nth coefficient groups (where 1 :::; n :::; 00). For 
any path-connected pointed CW complex W the map 

F(W): H(W) ~ H'(W) 

is a bijection if dim W :::; n - 1 and a surjection if dim W :::; n. 

PROOF Let u E H(Y) and u' E H'(Y') be universal elements for Hand H', 
respectively, and let f: Y ~ Y' be a map such that H'(f)(u') = F(Y)(u). For 
any CW complex W there is a commutative square 

[W;Y] ~ [W;Y'] 

r"l lr" 
H(W) ~ H'(W) 

in which, by theorem 7.7.14, both vertical maps are bijections. Since 
F(Sq): H(Sq) ~ H'(Sq) is an isomorphism for q < n and a surjection for q = n, 
it follows that f #: 'TT q( Y) ~ 'TT q( Y') is an isomorphism for q < n and a surjec­
tion for q = n. Since Y and Y' are path-connected pointed spaces, the map f 
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is an n-equivalence. The result follows from corollary 7.6.23 and the commu­
tativity of the above square. -

We use this last result to obtain the following classification theorem, 
which is a converse of lemma 4. 

8 THEOREM Let 'TT be an abelian group, Y a space of type ('TT,n), and 
t E Hn(Y,yo; 'TT) an n-characteristic element for Y. Let 1/;: 'TTy ~ Hn(. ;'TT) be the 
natural transformation defined by I/;[fl = f* t for [fl E [X; Y]. Then I/; is a 
natural equivalence on the category of path-connected pointed CW complexes. 

PROOF By lemma 7, it suffices to verify that I/; induces an isomorphism of all 
coefficient groups of the two homotopy functors 'TTy and Hn( • ;'TT). The only 
nonzero coefficient groups are 'TTn(Y,yo) and Hn(Sn,po; 'TT), and we need only 
verify that 

I/;(Sn): 'TTn(Y,yo) ~ Hn(Sn,po; 'TT) 

is an isomorphism. If v: Hn(Sn,po; 'TT) ;:::; 'TT is defined by v(v) = h(v)(<p[lsn]) (as 
in the proof of lemma 4), then v 0 I/;(Sn) = h(t) 0 <po Because tis n-characteristic 
for Y, v 0 I/;(Sn) is an isomorphism, and thus so is I/;(Sn). -

9 THEOREM Let Y be a space of type ('TT, 1) and let H be the functor which 
assigns to a pointed s/,Jce X the set of homomorphisms from 'TTl(X,XO) to 
'TTl(Y,YO). Let;j;: 'TTy ~ H be the natural transformation defined by ~[fl = f# 
for [fl E [X; Y]. Then ~ is a natural equivalence on the category of path­
connected pointed CW complexes. 

PROOF By lemma 7, it suffices to verify that 

~(Sl): 'TTl(Y,YO) ~ H(Sl,PO) 

is an isomorphism. Let ii: H(Sl,po) ;:::; 'TTl(Y,YO) be the isomorphism defined by 
ii(y) = y([lsl]) for y: 'TTl(Sl,PO) ~ 'TTl(Y,YO). Then ii is an inverse of ~(Sl), 
showing that ~(Sl) is an isomorphism. -

Note that if 'TTl(Y,YO) is abelian in theorem 9, the set of homomorphisms 
from 'TTl(X,XO) to 'TTl(Y,YO) is in one-to-one correspondence with the group 

Hom (?fl(X,xo), 'TTl(Y,YO)) ;:::; Hom (H1(X,xo), 'TTl(Y,YO)) ;:::; H1(X,xo; 'TTl(Y,YO)) 

and so theorems 8 and 9 agree in this case. 
We now consider the free homotopy classes of maps from X to Y. Since 

any O-cell Xo of a CW complex X is a nondegenerate base point (because, by 
theorem 7.6.12, the inclusion map Xo C X is a cofibration), it follows from 
corollary 7.3.4 that there is an action of 'TTl(Y,YO) on the set [X,xo; Y,yo]. 
Furthermore, if Y and X are path connected and this action is trivial, then 
the map from base-point-preserving homotopy classes to free homotopy classes 

[X,xo; Y,yo] ~ [X;Y] 

is a bijection. In case Y is a space of type ('TT,n), with n > 1, then 'TTl(Y,YO) = 0, 
and so there is a bijection 
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[X,xo; Y,yol :::::; [X;Yl 

In case Y is a space of type ('IT,1), the action of 'lTl(Y,YO) on [X,xo; Y,yol corre­
sponds under the bijection ;J; of theorem 9 to the action of 'lTl(Y,YO) on H(X,xo) 
by conjugation. Thus, if 'IT is abelian, there is a bijection 

[X,xo; Y,yol:::::; [X;Yl 

10 THEOREM If 'IT is an abelian group, Y is a space of type ('IT,n), and 
t E Hn(y,yo; 'IT) is n-characteristic for Y, then for any relative CW complex 
(X,A) the map 

!f;: [X,A; Y,yol --7 Hn(X,A; 'IT) 

is a bi;ection. 

PROOF In case A is empty and X is path connected, it follows from theorem 8 
and the observation above that there is a commutative square 

[X,xo; Y,yol ~ [X;Yl 

vt== ty 
Hn(x,xo; 'IT) ~ Hn(x;'IT) 

and so !f;: [X; Y 1 :::::; Hn(x,'IT). In case A is empty and X is not path connected, 
let {XI.} be the set of path components of X. The result follows from the first 
case on observing that [X; Yl :::::; X [XI.; Yl and Hn(x;'IT) :::::; X Hn(XA;'IT). In 
case A is not empty, let k: (X,A) --7 (X/ A,xo) be the collapsing map. Then the 
result follows from the already established bijection!f;: [X/A;Yl:::::; Hn(X/A;'IT) 
and the commutative diagram 

[X,A; Y,yol /';; [X/A,xo; Y,Yol? [X/A;Yl 

.;-t vt ==t~ 

Hn(X,A; 'IT) ~ Hn(x/ A,xo; 'IT) ? Hn(X/ A; 'IT) • 

II THEOREM Let Y be a space of type ('IT,1). For any path-connected CW 
complex X the set of free homotopy classes of maps from X to Y is in 
one-to-one correspondence with the set of con;ugacy classes of homomorphisms 
'lTl(X,XO) --7 'lTl(Y,YO) under the map [fJ --7 f#· 

PROOF This follows from theorem 9 and the remark above covering the 
action of 'lTl(Y,YO) on [X,xo; Y,yo]. • 

12 THEOREM Let Y be a space of type ('IT,n), with n:::;' 1 and 'IT abelian, 
and let t E Hn(y,yo; 'IT) be n-characteristic for Y. If (X,A) is a relative 
CW complex, a map f: A --7 Y can be extended over X if and only if 
of* (t) = 0 in Hn+1(X,A;'IT) 

PROOF Assume f = g 0 i, where i: A C X and g: X --7 Y. Then of* (t) = 
oi * g* (t) = 0, because oi * = O. Hence, if f can be extended over X, then 
of*(t) = O. 
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Conversely, assume of* (l) = 0. To extend f over X we need only extend 
f over each path component of X, and therefore there is no loss of generality 
in assuming X to be path connected (and A to be nonempty). Let Y' be the 
space obtained from the disjoint union X U Y by identifying a E A with 
f(a) E Y for all a E A. Then Y is imbedded in Y', the pair (Y', Y) is a relative 
CW complex, and there is a cellular map i: (X,A) ----7 (Y', Y) which induces an 
isomorphism i*: H*(Y',Y);:::::; H*(X,A) such that there is a commutative 
square 

Hn(Y,yo) ~ Hn+1(Y',Y) 

f* ~ :::~j* 

Hn(A) ~ Hn+1(X,A) 

Since of* (l) = 0, it follows that O(l) = 0, and there is v E Hn(Y',yo; 7T) such 
that v I (Y,Yo) = l. Since X and Yare path connected and A is nonempty, Y' 
is path connected. 

Let Y = Y' v I (that is, yo E Y' is identified with ° E I) and let 
yo = 1 E Y. Then Y is a path-connected space with nondegenerate base 
point yo. Let r: (Y,I) ----7 (Y',yo) be the retraction which collapses I to yo and 
let is = 1* (v) I (Y,yo) E Hn(y,yo; 7T). By theorem 7.7.11, there is an imbedding 
of Y in a space Y" which is a classifying space for the nth cohomology functor 
with coefficients 7T and which has a universal element 11 E Hn(y",yo; 7T) such 
that 11 I (Y,!/o) = is. Then Y" is a space of type (7T,n), and there is a unique 
n-characteristic element u E Hn(y",yo; 7T) such that u I Y" = 11 I Y". Then 
u I (Y,yo) = l, and it follows from theorem 8 and the commutativity of the 
diagram 

[Sq,po; Y,Yo] ----7 [sq,po; Y",Yo] 

.;,\.::: :::JC'.;,« 

Hn(Sq,po; 7T) 

that Y c Y" is a weak homotopy equivalence. Since the composite 
X ~ Y' c Y" is an extension of the composite A -4 Y c Y", it follows from 
theorem 7.6.22 that f can be extended to a map X ----7 Y. • 

We now show that cohomology operations are closely related to the 
cohomology of Eilenberg-MacLane spaces. Let 8(n,q; 7T,G) be the group of 
all cohomology operations of type (n,q; 7T,G). Thus 7T and G are abelian 
groups and an element () E 8(n,q; 7T,G) is a natural transformation from the 
Singular cohomology functor Hn(" ;7T) to the singular cohomology functor 
Hq(" ;G). 

13 THEOREM Let 7T be an abe lian group and let Y be a space of type (7T, n), 
with an n-characteristic element l E Hn(Y,yo; 7T). There is an isomorphism 

y: 8(n,q; 7T,G) ;:::::; Hq(Y,yo; G) 

defined by y(()) = ()(l) for () E 8(n,q; 7T,G). 
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PROOF Since, by theorem 7.8.1, every pair has a relative CWapproximation, 
a cohomology operation corresponds bijectively to a cohomology operation on 
the category of relative CW complexes. To define an inverse to y, given 
u E Hq(Y,yo; G), let 8u be the cohomology operation of type (n,q; 'IT,G) defined 
for a relative CW complex (X,A) by 

8u(v) =f~(u) 

where fv: (X,A) ----> (Y,yo) is a map such that f: (t) = v (fv exists and is unique 
up to homotopy, by theorem 10). Then 

y(8u ) = 8u(t) = It(u) = u 

showing that the map u ----> 8u is a right inverse of y. To show that it is also a 
left inverse of y, let (X,A) be a relative CW complex and let v E Hn(X,A; 'IT). 
We must show that 8Y(B)(V) = 8(v). Let fv: (X,A) ----> (Y,yo) be such that 
f'; (t) = v. Then we have 

8(v) = 8(f:f(t)) = f~(8(t)) = f:f(y(8)) = 8Y(B)(V) • 

We present one application of this result. 

14 COROLLARY Let 8 be a cohomology operation of type (n,q; 'IT,G). For any 
relative CW complex (X,A) the map 

8: Hn((X,A) X (U); 'IT) ----> Hq((X,A) X (1,1); G) 

is a homomorphism. 

PROOF The collapsing map 

k: (X X I, A X I U X X 1) ----> X X I/(A X I U X X i) 

induces isomorphisms in cohomology. Furthermore, X X I/(A X I U X X 1) 
is homeomorphic to S(X/ A) (where X/A is understood to be the disjoint 
union of X and a base point Xo in case A is empty). Thus it suffices to show 
that if X' is any pointed CW complex, then the map 

8: Hn(SX',xo; 'IT) ----> Hq(SX',xo; G) 

is a homomorphism. 
Let Y be a CW complex of type ('IT,n), with n-characteristic element t, 

and let Y' be a space of type (G,q), with q-characteristic element t'. 

Let f: Y ----> Y' be a map such that f* t' = 8(t). There is then a commutative 
diagram 

[SX',xo; Y,yol ~ [SX',xo; Y',y6l 

Hn(SX',xo; 'IT) ~ Hq(SX',xo; G) 

It is trivial that f# is a homomorphism when the top two sets are given group 
structures by the H cogroup structure of SX'. By lemma 7.7.6, it follows that 
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both vertical maps are homomorphisms. Hence the bottom map () is a 
homomorphism. • 

Let I E Hl(I,i; Z) be a generator and define an isomorphism 

r: Hr(X,A; G') ;:::; Hr+1((X,A) X (I,i); G') 

by r(u) = u X 1. Given a cohomology operation () of type (n,q; 7T,G), its 
suspension S() is the cohomology operation of type (n - 1, q - 1; 7T,G) 
defined by (S())(u) = r- 1()r(u) for u E Hn-l(X,A; 7T). Then corollary 14 implies 
that the suspension of any cohomology operation is an additive cohomology 
operation. 

We now extend theorems 10 and 12 to other spaces Y by restricting the 
dimension of the relative CW complex (X,A). Let Y be an n-simple (n - 1)­
connected pointed space for some n :2: 1 [if n = 1 then 7Tl(Y,YO) is abelianJ. 
If t E Hn(y,yo; 7T) is an n-characteristic element for Y, an argument similar to 
that in theorem 12 shows that Y can be imbedded in a space Y' of type (7T,n) 
having an n-characteristic element u E Hn(Y',yo; 7T) such that u I Y = t. It 
follows that the inclusion map Y C Y' is an (n + I)-equivalence. Then 
theorems 7.6.22 and 10 yield the following generalization of theorem 10. 

15 THEOREM Let t E Hn( Y, yo; 7T) be n-characteristic for an n-simple (n - 1)­
connected pointed space Y and let (X,A) be a relative CW complex. The map 

1/;,: [X,A; Y,yoJ ~ Hn(X,A; 7T) 

defined by 1/;,[fl = f* (t) is a bijection if dim (X - A) :::; n and a surjection 
if dim (X - A) :::; n + 1. • 

For the special case Y = Sn let s* E Hn(sn,po; Z) be a generator. Then 
s* is an n-characteristic element of Sn, and we obtain the following Hopf 
classificati(J.n theorem. 1 

16 COROLLARY Let (X,A) be a relative CW complex, with dim (X - A) :::; n, 
where n :2: 1. If s* E Hn(sn,po; Z) is a generator, there is a bijection 

1/;8*: [X,A; sn,poJ ;:::; Hn(X,A; Z) 

defined by 1/;8* ([fl) = f* (s*). • 

Similarly, we obtain the following generalization of theorem 12. 

17 THEOREM Lett E Hn(y,yo; 7T) be n-characteristicforann-simple(n - 1)­
connected pointed space Y and let (X,A) be a relative CW complex, with 
dim (X - A) :::; n + 1. A map f: A ~ Y can be extended over X if and only 
if 8f* (t) = 0 in Hn+l(X,A; 7T). • 

This specializes to the following Hopf extension theorem. 

1 See H. Hopf, Die Klassen der Abbildungen der n-dimensionalen Polyeder auf die n-dimen­
sionale Sphiire, Commentarii Mathematici Helvetici, vol. 5, pp. 39-54, 1933, and H. Whitney, 
The maps of an n-complex into an n-sphere, Duke Mathematical Journal, vol. 3, pp. 51-55, 1937. 
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18 COROLLARY Let (X,A) be a relative CW complex, with dim (X - A) :::;; 
n + 1, and let s* E Hn(Sn,po; Z) be a generator. A map f: A ~ Sn can be 
extended over X if and only if 13f* (s*) = 0 in Hn+1(X,A; Z). • 

2 PRINCIPAL FIBRATIONS 

This section is concerned with fibrations whose fiber is an Eilenberg-MacLane 
space. We shall develop an obstruction theory for the lifting problem of maps 
of relative CW complexes to such fibrations. In the next section we shall show 
that many maps can be factored up to weak homotopy type as infinite com­
posites of such fibrations. In this way the obstruction theory for these special 
fib rations leads to an obstruction theory for arbitrary maps. 

For any pointed space B' there is the path fibration PB' 14 B', where PB' 
is the space of paths in B' beginning at the base point boo Under the expo­
nential correspondence there is a one-to-one correspondence between homot­
opies H: X X I ~ B' such that H(x,O) = bo and maps H': X ~ PB', the cor­
respondence defined by H'(x)(t) = H(x,t). This easily implies the following result 
(which is dual to lemma 7.1.1). 

I LEMMA A map X ~ B' is null homotopic if and only if it can be lifted 
to the path fibration PB' ~ B'. • 

If (}: B ~ B' is a base-point-preserving map, there is a fibration po: Eo ~ B 
induced from the path fibration PB' ~ B'. This induced fibration is called the 
principal fibration induced by (} and has fiber po -l(bo) = bo X QB'. A 
straightforward verification shows that there is a covariant functor from the 
category of base-point-preserving maps between pointed spaces to the sub­
category of fibrations which assigns to (} the principal fibration induced by (}. 

Let (X,A) be a pair and let i: A c X be the inclusion map. Let po: Eo ~ B 
be the principal fibration induced by (}: B ~ B'. Recall that a map pair 
f: i ~ po (defined in Sec. 7.8) is a commutative square 

A ~ Eo 

i~ ~P' 

X-4B 

The set of homotopy classes [i;PoJ of map pairs from i to po is the object function 
of a functor of two variables contravariant in pairs (X,A) and covariant in base­
point-preserving maps (}. We are interested in studying in more detail the 
relative-lifting problem (that is, the map p: [X;EoJ ~ [i;po]) for this situation. 
Because po is an induced fibration, the relative-lifting problem is equivalent 
to an extension problem, as shown below. 

Let po: Eo ~ B be induced by (}: B ~ B'. For any space W a map 
f: W ~ Eo consists of a pair /1: W ~ Band fz: W ~ PB' such that 
p' 0 fz = (} 0 fl. By the exponential correspondence, fz corresponds to a 
homotopy F: W X I ~ B' from the constant map to (} 0 /1. Thus, given a map 
f1: W ~ B, there is a one-to-one correspondence between liftings f: W ~ Eo 
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of f1 and homotopies F: W X I --c> B' from the constant map to B 0 h. 
Let (X,A) be a pair with inclusion map i: A C X and let f: i --c> po be a 

map pair consisting of maps f": A --c> Eo and 1': X --c> B such that po 0 f" = 
l' 0 i. We define a map 

B(f): (A X I U X X i, X X 0) --c> (B',b&) 

by the conditions B(f)(x,O) = b&, B(f)(x,l) = B1'(x), for x E X, and 
B(f) I A X I is the homotopy from the constant map A --c> b& to the map 
B 0 l' 0 i corresponding to the lifting f" of l' 0 i. There is then a one-to-one 
correspondence between liftings of f and extensions of B(f) over X X 1. 

We now specialize to the case where B' is a space of type (w,n), with 
n ~ 1 and w abelian, and we let t E Hn(B',b&; w) be n-characteristic for B'. 
In this case, if B: B --c> B' is a base-point-preserving map, the induced fibration 
po: Eo --c> B is called a principal fibration of type (w,n). If (X,A) is a relative 
CW complex, then (X,A) X (I,i) is also a relative CW complex, and given a 
map g: A X I U X X i --c> B', it follows from theorem 8.1.12 that g can be 
extended over X X I if and only if 8g* (t) = 0 in Hn+1((X,A) X (I,i); w). 
In particular, given a map pair f: i --c> po, there is a lifting of f if and only if 
8B(f)* (t) = O. The obstruction to lifting f, denoted by c(f) E Hn(X,A; w), 
is defined by 

8B(f)* (t) = (-l)nT(c(f)) 

where T: Hn(X,A; w) :::::: Hn+1((X,A) X (1)); w) is the map T(U) = U X 1, de­
fined in Sec. 8.1 [1 E H1( I,i; Z) is the generator such that if 0 E HO( {O}; Z) 
and I E HO( {1 }; Z) are the respective unit integral cohomology classes, then, 
identifying HO(i;Z) :::::: HO({O};Z) EB HO({l};Z), we have 81 = 1 = -80J. 

2 EXAMPLE In case A is empty, a map pair f: i --c> po is just a map 
1': X --c> B. In this case B(f): X X i --c> B' is such that B(f)(x,O) = b& and 
B(f)(x,l) = B1'(x). Then B(f)* (t) = l' * B * (t) X 1, and so, by statement 5.6.6, 

8B(f)*(t) = (-l)n1'*B*(t) X 1 = (-l)nT1'*B*(t) 

Therefore, in this case c(f) = l' * B * (t). 
It is clear from the definition that the obstruction to lifting f is functorial 

in i and B and that it vanishes if and only if there is a lifting of f. We obtain 
a similar cohomological criterion for the existence of a homotopy relative to f 
of two liftings of f. 

Let J: i --c> po be a map pair, where (X,A) is a relative CW complex, with 
i: A C X, and po is a principal fibration of type (w,n). Given two liftings 
!o, !1: X --c> Eo of f, let g: i' --c> po be the map pair consisting of the commuta­
tive square 

g" 
A X I U X X i ~ Eo 

i'J 
XXI 
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where g' is the composite X X I ~ X 4 Band g" is the map such that 
g"(x,O) = Io(x) and g"(x,l) = Il(x) for x E X and g"(a,t) = f"(a) for a E A and 
tEl. Then 10 and 11 are homotopic relative to f if and only if g can be lifted. 
The obstruction to lifting g is an element c(g) E Hn( (X,A) X (I,i); 'TT), and we 
define the difference between 10 and h denoted by d(fo,fl) E Hn-l(X,A; 'TT), by 

c(g) = (- 1 )nT( d(fo,fl)) 

[so 88(g)* (t) = T2(d(fo,fl))]. Then 10 and 11 are homotopic relative to f if and 
only if d(fo,fl) = O. The difference d(fo,fl) is functorial and has the following 
fundamental properties. 

3 LEMMA Given a map pair f: i ~ po and liftings 10, 11, fz: X ~ Eo, then 

d(fo,f2) = d(fo,fl) + d(fd2) 

PROOF Let II = [O,lh], 11 = {O,~}, 12 = [IJ2,l], and 12 = {~,l} and define a 
map pair G: i ~ po consisting of the commutative square 

A X I U X X (il U i2) ~ Eo 

XXI J4B 

where G'(x,t) = f'(x), G"(a,t) = f"(a), G"(x,O) = Io(x), G"(x,1f2) = Il(x), and 
G"(x,l) = fz(x). Then c(G) E Hn((X,A) X (1,11 U 12 ); 'TT), and by the naturality 
of c( G) and the definition of d, we see that 

where 

and 

c(G) I (X,A) X (I,i) = (-1)nT(d(fo,f2)) 
c(G) I (X,A) X (11,11) = (-l)nTl(d(fo,fl)) 
c(G) I (X,A) X (Zz,12) = (-1)nT2(d(fd2)) 

Tl: Hn-l(X,A) ;:::::: Hn((X,A) X (11,11)) 

are defined analogously to T. From these properties, an argument similar to 
that used in proving that the Hurewicz homomorphism is a homomorphism 
(d. theorem 7.4.3) shows that 

T(d(fo,f2)) = T(d(fo,fl)) + T(d(fd2)) 

Since T is an isomorphism, this is the result. -

4 THEOREM Given a map pair f: i ~ po, a lifting 10: X ~ Eo off, and an 
element v E Hn-l(X,A; 'TT), there is a lifting fr: X ~ Eo of f such that 
d(fo,fl) = v. 

PROOF The map (J(f): A X I U X X 1 ~ B' used in defining c(f) admits an 
extension ho: X X I ~ B' which corresponds to the lifting 10: X ~ Eo. We 
seek another extension of (J(f) which will correspond to the desired lifting 11 
of f. Let F: (A X I X I U X X (0 X I U I X 1), X X I X 0) ~ (B',bo) be the 
map defined by F(a,t,t') = (J(f)(a,t') for a E A and t, t' E I, and 
F(x,O,t) = ho(x,t), F(x,t,O) = bo, and F(x,t,l) = ho(x,l) for x E X and t E 1. 
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Because X X [ X 0 is a strong deformation retract of the space 
A X [ X [ U X X (0 X [ U [ X i), there is a homotopy relative to X X [ X 0 
from F to the constant map F from A X [ X [ U X X (0 X [ U [ X i) to boo 

Let G: (X X 1 X [, A X 1 X [ U X X 1 X i) ~ (B',bo) be a map such 
that G*(L) = (_l)n-lv X I X IE Hn((X,A) X {l} X ([,i); 'IT) [such a map 
exists, by theorem 8.1.10, because (X,A) X {I} X ([,1) is a relative CW com­
plex]. There is a well-defined map 

H': (A X [2 u X X F, A X [ X [ U X X (0 X [ U [ X 1)) ~ (B',bo) 
such that H' I X X 1 X [ = G. Then 

H'I A X [X [ U X X (0 X [ U [X j) = F 

and because (X,A) X ([ X [,OX [ U [ X j) is a relative CW complex, the 
homotopy F ::::0 F reI X X [ X 0 extends to a homotopy H' ::::0 H reI X X [ X 0, 
where 

H: (A X [ X [ U X X j X [ U X X [ X i, X X [ X 0) ~ (B',bo) 
is an extension of F. Let hI: X X [ ~ B' be defined by h1(x,t) = H(x,l,t). 
Since H is an extension of F, hI is an extension of (}(f), and hence hI corre­
sponds to a lifting /1 of f. 

We now show that /1 has the desired properties. The definition of the 
map pair g: i' ~ po used to define d(jo,fl) is such that (}(g) = H. Therefore 

T 2(d(jo,fl)) = ~H* (L) = ~H' * (L) 

H' is a map from (A X [2 U X X j2, A X [2 U X X (0 X [ U [ X 1)) to 
(B',bo) whose restriction to X X 1 X [is G. From the commutativity of the 
diagram [where the map p, is given by p,(w X I X I) = w X I for 
wE H*(X,A)] 

Hn(A X [2 U X X F, A X [2 U X X (0 X [ U [ X i)) 
:::::j(' "-so::::: 

Hn(A X [2 U X X j2, X X [ X 0) 

st 
Hn+l((X.A) X ([2,F)) 

it follows that 

~~XlX~AXlX[UXXlX~ 

fLt::::: 
«_1)n-l,. Hn((X.A) X ([,~) 

8H'*(L) = (_l)n-lTp,G*(L) = T(V X 1) = T2(V) 

Since T2 is an isomorphism, dUo,/!) = V. • 

5 THEOREM Let (X,A) be a relative CW complex and let (X',A) be a sub­
complex, with inclusion maps i: A C X, i': A C X', and i": X' C X. Given a 
map pair f: i ~ po (consisting off": A ~ Eo and f': X ~ B) and two liftings 
go, gl: X' ~ Eo of fl i': i' ~ po, let go, gl: i" ~ po be the map pairs consisting, 
respectively, of the commutative squares 
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X' ~Ee X' ~ E8 

i"l Ip, i"l Ip, 
X LB X LB 

Then 

where 8: Hn-l(X',A; 'TT) ---'> Hn(x,X'; 'TT). 

PROOF Let h: T ---'> po be the map pair defined by the commutative square 

A X I U X' X i 4 Eo 

X' X I U X X i ~ B 

where h"(a,t) = f"(a) for a E A and tEl, h"(x',O) = go(x') and h"(x',l) = 
gl(X') for x' E X', and h'(x,t) = f'(x) for (x,t) E X' X I U X X i. Then 
c(h) E Hn(X' X I U X X i, A X I U X' X i; 'TT). There is an isomorphism 

Hn(X' X I U X X i, A X I U X' X i; 'TT) ;::::; 
Hn((X',A) X (I,i); 'TT) (fl Hn((x,X') X i; 'TT) 

induced by restriction. By the naturality of the obstruction, c(h) corresponds 
to (-l)n7"d(go,gl) = (-l)nd(go,gl) X i in the first summand and to 
c(go) X 0 + C(gl) X 1 in the second summand. 

Let h: i ---'> po be the map pair defined by the commutative square 

A X I U X' X i 4 Eo 

XXI h' 
~B 

where h'(x,t) = f'(x) for x E X and tEl. Then 

c(h) E Hn(x X I, A X I U X' X i; 'TT) 

and by the naturality of the obstruction again, 

c(h) I (X' X I U X X i, A X I U X' xi) = c(h) 

From the exactness of the sequence 

Hn(X X I, A X I U X' xi) ---'> Hn(X' X I U X X i, A X I U X' xi) 
~ Hn+1(X X I, X' X I U X xi) 

it follows that 8c(h) = o. Therefore, in Hn+l((X,A) X (I)); 'TT) we have (using 
theorem 5.6.6) 

o = 8[( -l)nd(go,gl) X i + c(go) X 0 + C(gl) X 1J 
= (-1)n8d(go,gl) X 1 - (-l)nc(go) X 1 + (_l)nC(gl) X i 

Therefore 7"( 8d(go,gl) - c(go) + C(gl)) = 0, and since 7" is an isomorphism, the 
result follows. • 
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We compute the obstruction c(f) explicitly for the case of a fibration 
pI: QB' ~ bo, where B' is a space of type ('7T,n), with n> 1. Then QB' is a 
space of type ('7T, n - 1), and if II E Hn-l(QB',wo; '7T) is (n - I)-characteristic 
for QB' and l E Hn(B',bo; '7T) is n-characteristic for B', then Oll and p* l [where 
0: Hn-l(QB',wo) :::::: Hn(PB',QB') and p: (PB',QB') ~ (B',bo)] are both elements 
of Hn(PB',QB'; '7T). The characteristic elements land II are said to be related 
if &1 = p* l. Given one of l or ll, it is always possible to choose the other one 
(uniquely) so that the two are related. 

6 THEOREM Let l E Hn(B',bo; '7T) and II E Hn-l(QB',wo; '7T) be related 
characteristic elements. Let (X,A) be a relative CW complex, with inclusion 
map i: A eX. Given a map pair f: i ~ pI, where pI: QB' ~ bo, then 
c(f) = - of" * (l/), where f": A ~ QB' is part of f 
PROOF Let f: (A X I, A X i) ~ (PB',QB') be the map defined by f(a,t)(t') = 
f"(a)(tt' ). Then 

8(f): (A X I U X X t, X X 0) ~ (B',bo) 

i~ the map such that 8(f) I A X I = P 0 f and 8(f)(X X t) = boo Let 
f: (A X I U X X t, X X t) ~ (B',bo) be the map defined by 8(f) and let 
f': (A X t, A X 0) ~ (QB',WO) be the map defined by f. There is then a com­
mutative diagram [in which i and l' are appropriate inclusion maps and 
hI: A ~ (X X t, A X 0) is defined by hl(a) = (a,I)] 

Hn(A X I U X X 1, X X 0) 

8(f),,/ if ~ 

Hn(B',bo) 1* --'--? Hn(A X I U X X 1, X X 1) -4 Hn+l((X,A) X (I,i)) 

pol /*1 :::: I (_l)n-IT 

Hn(PB',QB') ~ Hn(A X I, A X 1) Hn(X,A) 

81 81 
( _l)n-IT 
~ 18 

Hn-l(QB' ,wo) ~ Hn-l(A X 1, A X 0) 
h* 
~ Hn-l(A) 

Furthermore, 0 0 r- 1 0 l' * = r- 1 0 0: Hn(A X I U X X t, X X i) ~ Hn(X,A). 
Since f" = f' 0 hI, then f" * = h! 0 f' * , and we have 

(_I)n-lr- 10(8(f))* (l) = of" * (l/) 
By definition, the left-hand side above equals - c(f). • 

3 MOORE-POSTNIKOV FACTORIZATIO:\,S 

This section is devoted to a method of factorizing a large class of maps up to 
weak homotopy type as infinite composites of simpler maps, the simpler maps 
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being of the same weak homotopy type as principal fibrations of type ('IT,n) 
for some 'IT and n. The cohomological description of the lifting problem for 
these fibrations, given in the last section, will lead us ultimately to an iterative 
attack on general lifting problems. 

Given a sequence of fibrations Eo .EJ El ~ ... , we define 

Ex; = lim~ {Eq,pq} = {(eq) E X Eq I pq(eq) = eq-d 

and we define aq: Eoo ~ Eq to be the projection of Kxo to the qth coordinate. 
Then each map aq is a fibration and aq = Pq+l 0 aq+l for q ;:-:: O. For any 
space X a map f: X ~ KfO corresponds bijectively to a sequence of maps 
{fq: X ~ Eq}q:>o such thatfq = Pq+l 0 fq+l for q ;:-:: 0 (givenf, the sequence 
{fq} is defined by fq = aq 0 f). In particular, given a pair (X,A) with inclusion 
map i: A C X and a map pair f: i ~ ao consisting of the commutative square 

A ~ Ex 

il lao 
X L Eo 

a lifting f: X ~ Eoo corresponds bijectively to a sequence of maps 
{fq: X ~ Eq} q:>O such that 

(a) fo = f': X ~ Eo 
(b) For q ;:-:: 1 the map fq: X ~ Eq is a lifting of the map pair from ito pq 
consisting of the commutative square 

A ~ Eq 

i1 1pQ 

X ~ Eq_1 

In this way the relative-lifting problem for a map pair f: i ~ ao corresponds 
to a sequence of relative-lifting problems for map pairs from i to pq. In many 
cases the relative-lifting problems for the fibrations pq may be simpler to deal 
with than the original relative-lifting problem for the fibration ao. 

A sequence of fib rations Eo J!! El ~ ... is said to be convergent if for 
any n < 00 there is Nn such that pq is an n-equivalence for q > Nn • 

Let f: Y' ~ Y be a map. A convergent factorization of f consists of a 
sequence {pq,Eq,fq}q:>1 such that 

(a) For q > 1, pq: Eq ~ Eq- 1 is a fibration, and for q = 1, PI: El ~ Y 
is a fibration. 
(b) For q ;:-:: 1, fq: Y' ~ Eq is a map, fq = Pq+l 0 fq+l for q ;:-:: 1, and 
f = PI 0 h 
(c) For any n < 00 there is Nn such that fq is an n-equivalence for 
q>Nn . 

Conditions (a) and (b) imply that for q;:-:: 1, f equals the composite 
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P1 a ••• a pq a fq. The convergence condition (c) implies that, in a certain 
sense, the infinite composite P1 a P2 a ••• exists. 

If {pq,Eq,fq}q;,1 is a convergent factorization of a map f: Y' --,) Y, then 

the sequence of fib rations Y?' E1 ?!: .. , is convergent. The following 
theorem shows that any convergent sequence of fibrations is obtained in this 
way from a convergent factorization of some map. 

I THEOREM If Eo .f!-:- E1 jl3 . .. is a convergent sequence of fibrations, 
then {pq,Eq,aq}q;,1 is a convergent factorization of the map ao: Eoo --,) Eo. 

PROOF Conditions (a) and (b) for a convergent factorization are clearly 
satisfied. To prove that the convergence condition (c) is also satisfied, given 
I :::;; n < 00, choose N so that pq is an (n + I)-equivalence if q ~ N. We 
prove that aq is an n-equivalence for q ~ N. Because aq = Pq+1 a aq+1, and 
Pq+1 is an (n + I)-equivalence for q ~ N, it suffices to prove that aN is 
an n-equivalence. 

Let (P,Q) be a polyhedral pair such that dim P :::;; n and let lX: Q --,) Ex 
and {3H: P --,) EN be maps such that {3fv I Q = aN a lx. We now prove that 
there is an extension {3: P --,) KfO of lx such that aN a {3 = {3/V. The map lx 

corresponds to a sequence lXq = aq a lx: Q --,) Eq such that lXq = Pq+1 a lXq+1, 
and to define a map {3: P --,) Eoo with the desired properties, we must obtain 
a sequence of maps {3q: P --,) Eq such that {3q I Q = lxq, {3q = Pq+1 a {3q+1, and 
{3N = {3N. Such a sequence of maps {{3q} is defined for q :::;; N by {3q = 
Pq+1 a •.• a PN a {3N, and for q ~ N it is defined by induction on q as follows. 
Assuming {3q defined for some q ~ N, we use theorem 7.6.22 to find a map 
{3~+1: P --,) Eq+1 such that {3~+1 I Q = lXq+1 and such that {3q ~ Pq+1 a /3'q+1 
reI Q. We use the fact that Pq+1 is a fibration (and theorem 7.2.6) to alter {3~+1 by 
a homotopy relative to Q to obtain a map {3q+1: P --,) Eq+1 such that 
{3q+1 I Q = lXq+1 and such that {3q = Pq+1 a {3H1. Thus the sequence {{3q} can 
be found, and hence a map {3: P --,) Eoo with the requisite properties exists. 

Taking P to be a single point and Q to be empty, we see that aN is 
surjective, and so aN maps 'lTo(E"J surjectively to 'lTO(EN)' Taking (P,Q) = (I,i), 
we see that aN maps 'lTo(E"J injectively to 'lTO(EN)' Then aN induces a one-to­
one correspondence between the set of path components of Ex and the set of 
path components of EN. 

Let e* = (eq) E Ex be arbitrary and let I :::;; k :::;; n. Taking (P,Q) = (Sk,ZO) 
it follows that aN# maps 'lTk(Eoo,e*) epimorphically to 'lTk(EN,eN). For I :::;; k < n, 
taking (P,Q) = (Ek+l,Sk), it follows that lXN# maps 'lTk(Eoo,e*) monomorphically 
to 'lTk(EN,eN). Hence aN is an n-equivalence. -

2 COROLLARY Let {pq,Eq,fq} q;, 1 be a convergent factorization of a map 
f: Y' --,) Y and let f': Y' --,) Ex be the map such that aq a f' = fq for q ~ I 
and ao a f' = f. Then f' is a weak homotopy equivalence. 

PROOF For any I :::;; n < 00 there is q such that aq and fq are both 
(n + I)-equivalences (by theorem 1). Then f' is also an n-equivalence (because 

aq 0 f' = fq). Since this is so for all n, f' is a weak homotopy equivalence. -
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In particular, given a convergent factorization {pq,Eq,fq}q'21 of a weak 
fibration p: E ---'? B, there is a weak homotopy equivalence g: p ---'? ao consist­
ing of the commutative square 

B-4B 

If (X,A) is a relative CW complex, with inclusion map i: A C X, it follows 
from theorem 7.8.12 that the relative-lifting problem for a map pair h: i ---'? P 
is equivalent to the relative lifting problem for the map pair g 0 h: i ---'? ao. 
We shall now add hypotheses which will ensure that the sequence of fibra­
tions into which the fibration ao is factored (namely, the fibrations {pq}) leads 
to relative-lifting problems which can be settled by the methods of the last 
section. 

A Moore-Postnikov sequence of fib rations Eo ~ El J!.: ... is a convergent 
sequence of fibrations such that pq: Eq ---'? Eq_1 is a principal fibration of type 
(Gq,nq) for q ;::: 1. A Moore-Postnikov factorization of a map f: Y' ---'? Y is a 
convergent factorization {pq,Eq,fq}q'21 of f such that Eo <f!1 El .j!1 ... is a 
Moore-Postnikov sequence of fibrations. A Postnikov factorization of a space 
Y' is a Moore-Postnikov factorization of the map f: Y' ---'? Y, where Y is the 
set of path components of Y' topologized by the quotient topology and f is 
the collapsing map. Thus, if Y' is path connected, a Postnikov factorization of 
Y' is a Moore-Postnikov factorization of the constant map Y' ---'? yo. 

A Moore-Postnikov factorization of a map is a factorization of the map 
(up to weak homotopy type) as an infinite composite of elementary maps. 
The relative-lifting problem associated to this sequence is thereby factored 
into an infinite sequence of elementary relative-lifting problems. We shall 
show that Moore-Postnikov factorizations exist for a large class of maps 
between path-connected spaces. 

Let f: Y' ---'? Y be a map between path-connected pointed spaces. For 
n ;::: 1 an n-factorization off is a factorization of f as a composite Y'14 E' -4 Y 
such that 

(a) E' is a path-connected pointed space, p' is a fibration, and h' is a 
lifting of f (that is, f = p' 0 h') 
(h) h#: '7Tq(Y') ---'? '7Tq(E') is an isomorphism for 1 ::;: q < n and an epimor­
phism for q = n (that is, h' is an n-equivalence) 
(c) p#: '7Tq(E') ---'? '7Tq(Y) is an isomorphism for q > n and a monomorphism 
for q = n 

A map f: Y' ---'? Y between path-connected pointed spaces is said to be 
simple if f#('7Tl(Y')) is a normal subgroup of '7Tl(Y) and the quotient group is 
abelian, and if (Z" Y') is n-simple for n ;::: 1 (as defined in Sec. 7.3). We are 
heading toward a proof of the result that a simple map admits Moore-Postnikov 
factorizations. We need one more auxiliary concept. 
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Given a pointed pair (X,A) of path-connected spaces, a cohomology 
class v E Hn(X,A; 1T) is said to be n-characteristic for (X,A) if either of the fol­
lowing conditions hold: 

(a) n = 1 and i#( 1Tl(A)) is a normal subgroup of 1Tl(X) whose quotient 
group is mapped isomorphically onto 1T by the composite 

1Tl(X)/i#(1Tl(A)) ~ H1(X)/i* (Hl(A)) ~ Hl(X,A) ~ 1T 

(b) n> 1 and the composite 

1Tn(X,A) ~ Hn(X,A) ~ 1T 

is an isomorphism 

In case A = {xo}, the concept of n-characteristic element for the pair 
(X,{xo}) agrees with the concept of n-characteristic element for the space X 
as defined in Sec. 8.1. 

3 LEMMA Let i: A c X be a simple inclusion map between path-connected 
pointed spaces such that the pair (X,A) is (n - I)-connected, where n ~ l. 
Then there exist cohomology classes v E Hn(X,A; 1T) which are n-characteristic 
for (X,A), where 1T = 1Tl(X)/i#(1Tl(A)) for n = 1 and 1T = 1Tn(X,A) for n > l. 
PROOF If n = 1, it follows from the absolute Hurewicz isomorphism theorem 
applied to A and to X that there are isomorphisms 

1Tl(X)/i#(1Tl(A)) ~ H1(X)/i* (Hl(A)) i. Hl(X,A) 

By the universal-coefficient formula for cohomology, there is also an 
isomorphism 

h: Hl(X,A; 1T) :::::; Hom (Hl(X,A),1T) 

Hence, if 1T = 1Tl(X)/i#(1Tl(A)), there exist I-characteristic elements 
v E Hl(X,A; 1T). 

If n > 1, it follows from the relative Hurewicz isomorphism theorem and 
the universal-coefficient formula for cohomology that there are isomorphisms 
cp: 1Tn(X,A) :::::; Hn(X,A) and h: Hn(X,A; 1T) :::::; Hom (Hn(X,A),1T). Therefore, if 
1T = 1Tn(X,A), there are n-characteristic elements v E Hn(X,A; 1T). • 

4 LEMMA Let (X,A) be a pointed pair of path-connected spaces (n - 1)­
connected for some n ~ 1 and such that the inclusion map i: A C X is simple. 
Then there is an n-Jactorization A .!4 E' .4 X of i such that p' is a principal 
fibration of type (1T,n), where 1T = 1Tl(X)/i#(1Tl(A)) if n = 1 and 1T = 1Tn(X,A) 
if n > 1. 

PROOF By lemma 3, there is a class v E Hn(X,A; 1T) which is n-characteristic 
for (X,A). Let CA be the cone (nonreduced) over A and observe that {X,CA} 
is an excisive couple in X U CA. Therefore there is an element 
v' E Hn(X U CA; 1T) corresponding to v under the isomorphisms 

Hn(X U CA; 1T) ~ Hn(x U CA, CA; 1T) -:;? Hn(X,A; 1T) 
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It is possible to imbed X U CA in a space X' of type (7T,n) having an 
n-characteristic element L' such that L' I X U CA = v'. Let p': E' ~ X be the 
principal fibration induced by the inclusion X C X' and let PA: EA ~ A be 
the restriction of this fibration to A. There is a section s: A ~ EJ. such that 
s(a) = (a,wa) for a E A, where Wa is the path from Xo to the vertex of CA 
followed by the path from the vertex of CA to a (that is, wa(t) = [xo,1 - 2t] 
for 0::; t::; lh and wa(t) = [a, 2t - 1] for lh ::; t::; 1). We define h': A ~ E' 

iA I 

to be the composite A -4 EJ. C E' and shall prove that A 14 E' ~ X is an 
n-factorization of i. 

The fiber of P' (and hence also of pJ.) is [2X', and we define g: EJ. ~ [2X' 

by g(a,w) = w * (s(a))-l. Then g I [2X': [2X' ~ [2X' is homotopic to the identity 
map. If i": [2X' C EJ. is the inclusion map, it follows from the exactness of the 
homotopy sequence of the fibration pJ.: E1 ~ A that there is a direct-sum 
decomposition 

q ~ 1 

(This is a direct-product decomposition for q = 1, but we shall still write it 
additively.) We define a homomorphism A: 7Tq(X,A) ~ 7Tq_l([2X'), where 
q ~ 1, to be the composite 

7Tq(X,A) P~\ 7Tq(E',EA) ~ 7Tq_l(EA) ~ 7Tq_l([2X') 

We show that the following diagram commutes up to sign: 

7Tq(A) ~ 7Tq(X) ~ 7Tq(X,A) --4 7Tq_l(A) 

~ ~ ~ b 
7T q(E') ..!!.4 7T q(X) --4 7T q_l([2X') .!4 7T q_l(E') 

In fact, the left-hand and middle squares are easily seen to be commutative. 
We shall show that h# 0 0 = -i# 0 A. 

For q = 1 this is so because 7To(A) = 0 implies that h# 0 0 is the trivial 
map and the fact that i# is surjective and i# 0 A 0 i# = i# 0 a = 0 implies 
that i# 0 A is also the trivial map. For q > 1 we have 

a = i~ + s#pJ.~ a E 7Tq-l(EJ.) 

Since the composite 7Tq(E',El) -4 7Tq_l(E;') ~ 7Tq_l(E') is trivial, it follows that 
for f3 E 7Tq(E',EA) 

0= iA#of3 = i~i'~of3 + iA~#pJ.#of3 
= i~of3 + h#oP#f3 

By definition of A, we see that Ap#f3 = ~of3. Therefore 

i#-\P#f3 + h#op#f3 = 0 

Since P#: 7Tq(E',E.J.) ;:::; 7Tq(X,A), this proves h# 0 0 = -i# 0 A. 
A straightforward verification shows that A is also the composite 
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The construction of X' and t' E Hn(X','rr) shows that there is a commutative 
diagram 

7Tn(X,A) --'> 7Tn(X U CA, CAl ~ 7Tn(X U CAl --'> 7Tn(X') 

qol~ qcl qcl ~lqo 

Hn(X,A) --'> Hn(X U CA, CAl ~ Hn(X U CAl --'> Hn(X') 

h(u~ ",. h(VY 
~<') 

7T 

Therefore A: 7Tn(X,A) ;::::; 7Tn _l(r2X'). 
In case n = 1, a: 7Tl(X) -+ 7To(flX') is surjective [because 7To(A) = 0], and 

so E' is path connected. If n > 1, E' is path connected because 7To(r2X') = O. 
Therefore E' is a path-connected pointed space. Since 7T q(r2X') = 0 for q :?: n, 
it follows from the exactness of the homotopy sequence of the fibration 
p': E' --'> X that p#: 7T q(E') --'> 7T q(X) is an isomorphism for q > n and a 
monomorphism for q = n. 

Because A: 7Tq(X,A) --'> 7Tq_l(r2X') is a bijection for q ::;: n (the only non­
trivial case in these dimensions being q = n), it follows from the five lemma 
and the commutativity up to sign of the diagram on page 442 that 
b#: 7Tq(A) --'> 7Tq(E') is an isomorphism for 1 ::;: q < n and an epimorphism for 
q = n. Therefore b' and p' have the properties required of an n-factorization 

of i. -

5 COROLLARY Let g: X' --'> X be a simple map between path-connected 
pointed spaces such that for some n :?: 1 the map g#: '7Tq(X') --'> 7Tq(X) is an 
isomorphism for 1 ::;: q < n - 1 and an epimorphism for q = n - 1. Then 

there is an n-factorization X' .!4 E' 4 X of g such that p' is a principal 
fibration of type (7T,n) for some abelian group 7T. 

PROOF Let Z be the reduced mapping cylinder of g (that is, the mapping 
cylinder of g I xo: Xo --'> Xo has been collapsed to a point). Then (Z,X') is a 
pOinted pair of path-connected spaces (n - l)-connected and with simple 

inclusion map i: X' C Z. By lemma 4, there is an n-factorization X' 14 E" 4 Z 
of i such that p" is a principal fibration of type (7T,n). Let p': E' --'> X be the 
restriction of p" to X. Then E' C E" is a homotopy equivalence, so there is a 
map h": X' --'> E' such that b" is homotopic to the composite X' 14 E' C E". 
Then p' 0 h" is easily seen to be homotopic to g. By the ho~otopy lifting 
property of p', there is a map b': X' --'> E' homotopic to b" such that 

p' 0 b' = g. Then X'.!4 E' .4 X is easily verified to have the requisite 
properties. -
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We are now ready to prove the existence of Moore-Postnikov factoriza­
tions of a simple map between path-connected pointed spaces. 

6 THEOREM Let f: Y' ~ Y be a simple map between path-connected 
pointed spaces. There is a Moore-Postnikov factorization {pq,Eq,fq}Q?l of f 
such that for n ~ 1 the sequence 

Y' ~ En PI 0 ••. 0 Pn) Y 

is an n-factorization of f. 
PROOF By induction on q, we prove the existence of a sequence {pq,Eq,fq}q?l 
such that 

(a) For n = 1 the sequence Y' .4 E1 ~ Y is a I-factorization of f. 
(b) For n > 1 the sequence Y' b. En ~ En- 1 is an n-factorization offn-1' 

(c) For n ~ 1, pn is a principal fibration of type (7Tn,n) for some 7Tn. 

Once such a sequence {pq,Eq,fq} has been found, it is easy to verify that 
it is a Moore-Postnikov factorization of f with the desired property. Therefore 
we hmit ourselves to proving the existence of such a sequence. 

By corollary 5, with n = 1, there is a I-factorization Y' .4 E1 ~ Y of f 
with P1 a principal fibration of type (7T1,I) for some 7T1. This defines P1, E1, 
andh Assume {pq,Eq,fq} defined for 1 :s:; q < n, where n > 1, to satisfy (a), 

(b), and (c) above. By corollary 5, there is an n-factorization Y' b. En ~ En- 1 
of fn-1 such that pn is a principal fibration of type (7Tn,n) for some 7Tn. Then 
pn, En, and fn have the desired properties. • 

7 COROLLARY Let Y' be a simple path-connected pointed space. Then Y' 
has a Postnikov factorization {pq,Eq,fq}q?l in which 7Tq(En) = 0 for q ~ n 
(lnd fn: Y' ~ En is an n-equivalence. 

PROOF If Y' is a simple space, the constant map Y' ~ yo is a simple map. 
The result follows from theorem 6. • 

In the above the spaces En approximate Y' in low dimensions. We now 
present an alternate method of approximating a space in high dimensions by 
kilhng low-dimensional homotopy groups. 

8 COROLLARY Let Y be a simple path-connected pointed space. There is a 
Moore-Postnikov sequence of fibrations Y ~ E1 .J!-2. .. such that En is 
n-connected and P1 0 ••• 0 pn: En ~ Y induces isomorphisms 7Tq(En) :::::: 7Tq(Y) 
for q > n. 

PROOF If Y is a simple space, the inclusion map yo C Y is a simple map. 
The result then follows from theorem 6. • 

In the last result the fibration P1: E1 ~ Y has the homotopy properties of a 
universal covering space of Y. The fibration P1 0 ••• 0 pn: En ~ Y is a kind 
of "n-covering space." 



SEC. 4 OBSTRUCTION THEORY 445 

4 OBSTRL'CTION THEORY 

In this section we show how to use Moore-Postnikov factorizations to study 
the relative-lifting problem. A sequence of obstructions to the existence of a 
lifting (or to the existence of a homotopy between two liftings) is defined 
iteratively, and we apply the general machinery to the special case where 
either the first one or the first two obstructions are the only ones that enter. 

Let p: E -0 B be a fibration between path-connected pointed spaces and 
assume that p is a simple map. By theorem 8.3.6, there exist Moore-Postnikov 
factorizations {pq,Eq,fq}q"l of p. By corollary 8.3.2, there is a map p': E -0 E" 
which is a weak homotopy equivalence. Since p = ao 0 p', where ao: Ex -0 B, 
if (X,A) is a relative CW complex, with i: A C X, it follows from theorem 7.8.12 
that the relative-lifting problem for a map pair from i to p is equivalent to the 
relative-lifting problem for a corresponding map pair from i to ao. Thus we 
are led to consider the relative-lifting problem for a map pair from i to ao. 

Let Eo 'p-l E1 .j!3 ... be a sequence of fibrations with limit Ex and maps 
aq: K" -0 Eq and let (X,A) be a relative CW complex, with inclusion map 
i: A C X. A map pair f: i -0 ao is a commutative square 

A~K" 

X L Eo 

where f" corresponds to a collection {f~: A -0 Eq}q"o such that Pq+1 0 f~~l = f~' 
for q ;::: O. For q ;::: 1 let fq: i -0 P1 0 ••• 0 pq be the map pair consisting of 
the commutative square 

A f" 
~ Eq 

i1 1pl 0 .OPq 

X f' 
~ Eo 

If fq: X -0 Eq is a lifting of fq, then pq 0 fq is a lifting of fq-1 for q > 1 and a 
lifting f: X -0 Ex of f corresponds to a sequence {fq: X -0 Eq} q" 1 such that 

(a) fq is a lifting of fq for q ;::: l. 
(b) Pq+1 0 fq+1 = fq for q ;::: l. 

Given a lifting fq: X -0 Eq of fq for q ;::: 1, let g(fq): i -0 Pq+1 be the map 
pair consisting of the commutative square 

A f;;+l) Eq+1 

i1 lpq+l 

X L Eq 
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A map jq+1: X ~ Eq+1 is a lifting of g(jq) if and only if it is a lifting of fq+1 
such that Pq+1 0 jq+1 :::: jq. Thus a sequence of maps {jq: X ~ Eq}q:>l satisfies 
conditions (a) and (b) above if and only if it has the following properties: 

(c) j1 is a lifting of h 
(d) For q ~ 1, jq+1 is a lifting of g(jq). 

We now add the hypothesis that Eo <fl.1 E1 ~ ... is a Moore-Postnikov 
sequence of fibrations. For each q ~ 1, pq is then a principal fibration of type 
(7T q,nq). It follows from Sec. 8.2 that h can be lifted if and only if 
c(h) E Hnl(X,A; 7T1) is zero. The class C(1) is called the first obstruction to 
lifting f. 

Assume that for some q > 1 there exist liftings jq-1: X ~ Eq- 1 of the 
map pair fq-1: i ~ P1 0 ••• 0 Pq-1. We then obtain map pairs g(jq-1): i ~ pq 
and corresponding elements C(g(jq-1)) E Hnq(X,A; 7Tq). The collection 
{C(g(jq_1))} corresponding to the set of allliftings jq-1: X ~ Eq_1 of fq-1 is 
called the qth obstruction to lifting f. It is a subset of Hnq(X,A; 7T q) and is de­
fined if and only if fq-1 can be lifted. It is clear that there is a lifting of fq if 
and only if the qth obstruction to lifting f is defined and contains the zero 
element of Hnq(X,A; 7Tq). 

Corresponding to a Moore-Postnikov sequence of fibrations we have been 
led to a sequence of successive obstructions. The first obstruction is a single 
cohomology class, while the higher obstructions are subsets of cohomology 
groups. In some cases these obstructions can be effectively computed in terms 
of the given map pair f: i ~ ao, and this computation provides a solution of 
the lifting problem in these cases. In general, however, the determination of 
the successive obstructions involves an iterative procedure of increasing com­
plexity and has not been effectively carried out in each case. 

We illustrate this technique by applying it to the Postnikov factorization 
of a simple path-connected pointed space Y, given in corollary 8.3.7. There is 
a Postnikov factorization {pq,Eq,fq}q:>l of Yin which 7Tq(Em) :::: 0 for q ~ m and 
fm: Y ~ Em is an m-equivalence. We call this the standard Postnikov factori­
zation of Y. By corollary 8.3.2, there is a weak homotopy equivalence 
f': Y ~ Eoo, and so we consider the lifting problem for a map i ~ ao, where 
i: A C X and ao: Eoo ~ yo. Since yo is a point, this is equivalent to the exten­
sion problem for a map ftl: A ~ Eoo-

Thus we seek a sequence of maps jq: X ~ Eq such that j1: X ~ E1 is an 
extension of a1 0 f" and jq+1: X ~ Eq+1 for q ~ 1 is a lifting of the map pair 
g(jq): i ~ Pq+1 consisting of 

l!q+l 
X _--,-l--,-q~) Eq 

Since Pq+1 is a principal fibration of type (7T q(Y,yo), q + 1), the obstruction to 
lifting g(jq) is an element of Hq+1(X,A; 7Tq(Y,yo)). Hence there is defined a 
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sequence of obstructions to extending f": A -') Y, the (q + I)st obstruction 
being a subset of Hq+1(X,A; 'TTq(Y,yo)). If Y is (n - I)-connected for some 
n ::::: 1, the lowest-dimensional nontrivial obstruction is in Hn+1(X,A; 'TTn(Y,yo)). If 
l E Hn(Y,yo; 'TT) is n-characteristic for such a space Y, it follows easily from 
theorem 8.2.6 that this lowest obstruction is -+-8f" * L This gives us the fol­
lowing generalization of theorem 8.1.17. 1 

I THEOREM Let l E Hn(Y,yo; 'TT) be n-characteristic for a simple (n - 1)­
connected pointed space Y, where n::::: 1, and let (X,A) be a relative 
CW complex such that Hq+l(X,A; 'TTq(Y,yo)) = 0 for q > n. A map f: A -') Y 
can be extended over X if and only if 8f* (l) = 0 in Hn+1(X,A; 'TT). 

PROOF We use the standard Postnikov factorization of Y. This leads to a se­
quence of obstructions to extendingfwhich are subsets of Hq+1(X,A; 'TTq(Y,Yo)). 
Since these are all zero except Hn+1(X,A; 'TTn(Y,yo)) ;:::::; Hn+l(X,A; 'TT), the only 
obstruction to extending f is an element of Hn+1(X,A; 'TT). By the remarks 
above, this obstruction vanishes if and only if 8f* (l) = O. • 

Let fo, it: X -') Y be maps and define g: X X j -') Y by g(x,O) = fo(x) 
and g(x,I) =h(x). For any u E Hq(Y), 8g*(u) = (-I)qT(f!u -f~u) in 
Hq+1(X X I, X X h. Therefore 8g*(u) = 0 if and only iff~(u) = f!(u), and 
we obtain the following partial generalization of theorem 8.1.15 by applying 
theorem 1 to the pair (X X I, X X i} 

2 THEOREM Let l E Hn(Y,yo; 'TT) be n-characteristic for a simple (n - 1)­
connected space Y, where n ::::: 1, and let X be a CW complex such that 
Hq(X; 'TTq(Y,Yo)) = 0 for q > n. Then fo, it: X -') Yare homotopic if and only 
iff~(l) = f!(l). • 

This last result gives a condition that the map 1/;,: [X; Y 1 -') Hn(X, 'TT) 
be injective. The condition that 1/;, be surjective is that if {pq,Eq,fq}q?1 is the 
standard Postnikov factorization of Y, then any map X ~ En+l can be lifted. 
The obstructions to lifting such a map lie in Hq+l(X; 'TTq(Y,yo)) for q > n. 
Therefore, by combining these, we have the following result. 

3 THEOREM Let l E Hn(Y,yo; 'TT) be n-characteristic for a simple (n - 1)­
connected space Y, where n ::::: 1, and let X be a CW complex such that 
Hq(X;'TTq(Y)) = 0 and Hq+1(X;'TTq(Y)) = 0 for all q > n. Then there is a bijection 

1/;,: [X; Yl ;:::::; Hn(X;'TT) • 

These last results have been derived by assuming hypotheses which ensure 
that the lowest-dimensional obstruction is the only nontrivial one. In this case 
we are essentially studying maps to a space of type ('TT,n). The case where the 
two lowest-dimensional obstructions are the only nontrivial obstructions is 
essentially the study of maps to a fibration E -') B of type (G,q), where B is a 

1 See S. Eilenberg, Cohomology and continuous mappings, Annals of Mathematics, vol. 41, 
pp. 231-251, 1940. 
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space of type (w,n). Before we consider this, let us establish some cohomology 
properties of X X I. 

Define inclusion maps 
i 1 jl 

A X I U X X 1 C A X I U X X j C (A X I U X X i, A X I U X X 1) 

There is a weak retraction r: A X I U X X j ~ A X I U X X 1 defined by 
r(x,t) = (x,l) for (x,t) E A X I U X X j (that is, roil is homotopic to the 
identity map of AX I U X X 1). Using the exactness of the cohomology 
sequence of (A X I U X X i, A X I U X X 1), it follows that for an arbitrary 
element u E Hq(A X I U X xi) there is an associated unique element 
u' E Hq(A X I U X X i, A X I U X X 1) such that 

u = iT u' + r* i T u 

Let h: (X,A) ~ (A X I U X X j, A X I U X X 1) be defined by 
h(x) = (x,O) for x E X. Then h induces an isomorphism 

h*: Hq(A X I U X X j, A X I U X X 1) ;::::; Hq(X,A) 

and we define an epimorphism 

il: Hq(A X I U X X j) ~ Hq(X,A) 

by il(u)=h*u', where u'EHq(AXIUXxi,AxIUXX1) is the 
unique element associated to u. Then il is a natural transformation on 
the category of pairs (X,A). 

4 LEMMA Commutativity holds in the triangle 

Hq(A X I U X X i) ~ Hq+l((X,A) X (I,i)) 

Hq(X,A) 

PROOF Let 1': X X I ~ A X I U X X 1 be defined by 1'(x,t) = (x,l). Then 
1'1 (A X I U X X i) = r, and so r*itu = (1'*itu) 1 (A X I U X X i) for 
u E Hq(A X I U X X i). For any v E Hq(X X 1), 8(v 1 (A X I U X X i)) = O. 
Therefore, 8r * i T u = 0, and to complete the proof it suffices to show that for 
u' E Hq(A X I U X X i, A X I U X Xl), 8iT (u') = (-l)q+Lrh* (u'). This 
follows from the commutativity of a diagram analogous to the one used in the 
proof of theorem 8.2.4. • 

:. COROLLARY Let (X,A) be a relative CW complex, with inclusion map 
i: A C X, and let p': QB' ~ bo be the constant map, where B' is a space of 
type (w,n + 1). Given a map pair f: i ~ p' and two liftings fo, /1: X ~ QB' 
of f, let g": A X I U X X I ~ QB' be defined by g"(x,O) = fo(x), g"(x,l) = 
/1 (x), and g"(a,t) = fo(a). If t' E Hn(QB',wo; w) and t E Hn+l(B',bo; w) are 
related characteristic elements, then d(fo,/1) = - ilg" * (t'). 
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PROOF Let g: i' ~ p' be the map pair consisting of the commutative square 

A X I U X X j L ~B' 

it lp' 
X Xl ~ bo 

From the definition of d(fo,h) we have d(fo,h) = ( -l)n+Lr-l(c(g)). By theo­
rem 8.2.6 c(g) = - 8g"* (l'), and therefore d(fo,fl) = (-1 )n'J"-18g"* (l'). 
The result follows from this and lemma 4. • 

6 LEMMA Let ho, h1 : (X,A) ~ (A X I U X X t A X 1) be defined by 
ho(x) = (x,O) and h1(x) = (x,l). For any u E Hq(A X I U X X t A X I) 

Ll(u I (A X I U X X i)) = h~(u) - h!(u) 

PROOF There are inclusion maps 
~ h 

(A X I U X X 1, A X 1) C (A X I U X X t A X 1) C 

(A X I U X X t A X I U X X 1) 

and a weak retraction r': (A X I U X X t A X I) ~ (A X I U X X 1, A X I) 
defined by r'(x,t) = (x,l). For v E Hq(A X I U X X t A X 1) there is an 
associated unique element v' E Hq(A X I U X X t A X I U X X 1) such that 

v = ii * v' + r' * ii * v 

If k: A X I U X X j C (A X I U X X j, A X I), we then have 

k* v = k* ii * v' + k* r' * ii * v = it v' + r* i ! k* v 

Therefore Llk* v = h* v'. Since h = i1 0 ho and hl = i1 0 r' 0 ho, we have 

Llk* v = h~ ii * v' = h~ (v - r' * i1 * v) = h~ v - h! v • 

7 COROLLARY Given a map pair g: i' ~ p, where (X,A) is a relative CW 
complex, i': A X I c A X I U X X t and p: E ~ B is a principal fibration 
of type (G,q) induced by a map 0: B ~ B', let fo, h: i ~ P be the map pairs 
from i: A C X to p defined by restriction of g to (X,A) X ° and (X,A) X 1, 
respectively. Then 

Llg' * 0 * (l) = c(fo) - c(h) 

where g': A X I U X X j ~ B is part of the map pair g. 

PROOF The obstruction c(g) E Hq(A X I U X X i, A X I; G) has the prop­
erty that c(g) I (A X I U X xi) is the obstruction to lifting g'. Therefore 

c(g) I (A X I U X X i) = g'*O*(l) 

By the naturality of the obstruction, h~ c(g) = c(fo) and h! c(g) = c(h). The 
result now follows from lemma 6. • 
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Let () be a cohomology operation of type (n,q; '7T,G). Given a cohomology 
class u E Hn(x;'7T), we define a map 11((),u): Hn(X,A; '7T) ~ Hq(X,A; G) by 

11((),u)(v) = M(jfh*-1(v) + k*u) v E Hn(X,A; '7T) 

where k: A X I U X X i ~ X is defined by k(x,t) = x. In case () is an addi­
tive cohomology operation, we have 

11((),u)(v) = l1(jf h* -1()(V) + k* ()(u)) = ()(v) 

Therefore 11((),u) = () if () is additive. 
Given a cohomology operation () of type (n,q; '7T,G) and a cohomology 

class u E Hn(x;'7T), we define a map SI1((),u): Hn-1(X,A; '7T) ~ Hq-1(X,A; G) by 
the equation SI1((),u) = 'T-1 0 11((),u') 0 'T, where u' E Hn(X X I; '7T) is the 
image of u under the homomorphism induced by the projection X X I ~ X. 
If () is an additive operation, then SI1((),u) = S(). In any case, we have the 
following analogue of corollary 8.1.14. 

8 LEMMA If () is a cohomology operation of type (n,q; '7T,G) and 
u E Hn(X;'7T), the map 

SI1((),u): Hn-1(X,A; '7T) ~ Hq-1(X,A; G) 

is a homomorphism. 

PROOF Let 11 = [o,~], 11 = {o,~}, 12 = [~,l], and 12 = {~,1}, and let 
V1, V2 E Hn-1(X,A; '7T). Let vl = 'T1(V1) E Hn((X,A) X (11.11)) and let 
vz = 'T2(V2) E Hn((X,A) X (12,12)), and let v E Hn((X,A) X (I, 11 U 12)) be the 
unique class such that v I (X,A) X (11,11) = vl and v I (X,A) X (12,12) = vz. 
Then v I (X,A) X (1,1) = 'T(V1) + 'T(V2). Since () and 11 are both natural, 

and 

11((),u')(v) I (X,A) X (1,1) = 'TSI1((),U)(V1 + V2) 

11((),u')(v) I (X,A) X (11.11) = 'T1 SI1((),U)(V1) 
11((),u')(v) I (X,A) X (12,12) = 'T2 SI1((),U)(V2) 

Therefore, as in the proof of lemma 8.2.3, 

'TSI1((),U)(V1 + V2) = 'TSI1((),U)(V1) + 'TSI1((),U)(V2) 

Since 'T is an isomorphism, this gives the result. • 

Let B be a space of type ('7T,n) and let p: E ~ B be a principal fibration 
of type (G,q) induced by a map 0: B ~ B'. Let ()' = O*(t') E Hq(B,bo; G) 
correspond to a cohomology operation () of type (n,q; '7T,G) (that is, ()(t) = ()'). 
Given a CW complex X, a map f: X ~ B can be lifted to E if and only if 
()(f*(t)) = O. For any element U E Hn(x;'7T) such that ()(u) = 0 it follows that 
there are liftings f: X ~ E such that (p 0 f) * (t) = u. We shall determine how 
many homotopy classes of such liftings there are. 

9 LEMMA Let fo, II: X ~ E be maps such that po fo = po II (that is, 
fo and II are liftings of the same map X ~ B). Then fo ~ II if and only if 
there is d E Hn-1(X;'7T) such that dUo,f1) = SI1((),u)(d), where u = (p 0 10)* (t). 
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PROOF Let Fo: i' ---> P be the map pair consisting of 
. P' 

XXI ~ E 
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where Fo(x,O) = fo(x), F6'(x,l) = h(x), and Fo(x,t) = pfo(x). Then d(fo,fl) = 
(-1)qT-1(c(Fo)). It is clear that fo c--:: h if and only if there is a homotopy 
Pi: X X I ---> B from p 0 fo to p 0 h such that for the corresponding map pair 
F1: i' ---> P we have c(F1) = O. Let G': (X X 1) X I U (X X 1) X i ---> B be 
defined by G'(x,O,t) = G'(x,l,t) = pfo(x), G'(x,t,O) = Fo(x,t) and G'(x,t,l) = 
Fi(x,t). By corollary 7, 

6.G' * (0') = c(Fo) - C(Fl) 

Thus fo c--:: fl if and only if there is a map Fi: X X I ---> B such that for the 
corresponding map G' we have 

d(fo,h) = (_l)qT-l(6.G'* (0')) 

It is easily verified that G'*(t) = Hh*-l6.G'*(t) + k*u', where 
u' E Hn(x X I; 'TJ) is the image of u = (p 0 fo)* (t) under the projection 
X X I ---> X. By definition, 

6.G' * (0') = 6.G' * O(t) = MG' * (t) = 6.(O,u')(6.G' * (t)) 

Since Fa, Pi: X X 1---> B are two liftings of the map pair 

XXi--->B 

1 1 
X X I ---> bo 

it follows from corollary 5 that d(Fo,Fl) = - 6.G' * (t), and by theorem 8.2.4, 
given dE Hn-l(X;'TJ), there is a homotopy Pi: X X 1---> B from po fo to p 0 h 
such that ~G'*(t) = (-l)Qr(d). Combining all of these, we see that fo = ji. 
if and only if there is d E Hn-l(X;'TJ) such that 

d(fo,fI) = T-l6.(O,U')T(d) = S6.(O,u)(d) • 

We summarize these results in the follOwing classification theorem. 

10 THEOREM Let p: E ---> B be a principal fibration of type (G,q) over a 
space B of type ('TJ,n) induced by a map B: B ---> B' such that 8*(t') = O(t). 
Given a CW complex X, there is a map 1/;: [X;E] ---> Hn(X;'TJ) defined by 
1/;[fl = (p 0 f)* (t). Then im 1/; = {u E Hn(x;'TJ) 10(u) = O}, and for every 
u E im 1/; the set 1/;-l(U) is in one-to-one correspondence with 

Hq-l(X;G)jS6.(O,u)Hn-l(X;'TJ) 

PROOF We have already seen that im 1/; is as described in the theorem. 
Given u E im 1/;, let fo: X ---> E be such that 1/;[fo] = u. Given any map 
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/1: X ----7 E such that 1/;[/1] = u, there is a map f1: X ----7 E homotopic to /1 
such that p 0 f1 = p 0 fo (by the homotopy lifting property of p). To such a 
map f1 we associate the element d(fo,fi) E Hq-l(X;G). In this way the set of 
maps X ----7 E which are liftings of p 0 fo is mapped into Hq-l(X;G), and by 
theorem 8.2.4, this map is surjective. 

Two maps /1,fz: X ----7 E such that p 0 /1 = po fo = po fz, are homotopic 
by lemma 9 if and only if d(fdz) E S6.(B,u)Hn-l(X;7T). By lemma 8.2.3, 
d(fo,fz) = d(fo,/1) + d(fdz) , and so Jl = fz if and only if d(fo,fl) and 
d(fo,fz) belong to the same coset of S6.(B,u)Hn-l(X;7T) in Hq-l(X;G). Hence 
the function which assigns the coset d(fo,/1) + S6.(B,u)Hn-l(X;7T) to a map 
fl: X ----7 E with po /1 = p 0 fo induces a bijection from l/;-l(U) to 

Hq-l(X;G)/S6.(B,u)Hn-l(X;7T) • 

We now apply this to the complex projective space P m(C) for m 2': 1. 
There is a map P m(C) ----7 P x(C) and P ",(C) is a space of type (Z,2), by 
example 8.1.3. Furthermore, if t is a characteristic element for P ",(C) and B' 

is a space of type (Z, 2m + 2), there is a map 0: P",(C) ----7 B' such that 
0* (t') = (l)m+1. For the principal fibration p: E ----7 Px(C) induced by 0 there is 
a map P m(C) ----7 E which is a (2m + 2)-equivalence. In this case the operation 
B is the (m + l)st-power operation, and therefore 

S6.(B,u)(v) = 7-16.Uth*-1('r(v)) + k*u']m+l 
= 7- 16.[(m + l)k*(u')m v ith*-1(7(v))] = (m + l)um v v 

because 7(V) v 7(V) = O. This gives the following application of theorem 10. 

II THEOREM Let t E HZ(Pm(C);Z) be 2-characteristic for Pm(C) and let X 
be a CW complex. Define 1/;: [X;Pm(C)] ----7 HZ(X;Z) by I/;[f] = f* (t). If 
dim X S; 2m + 2, then im I/; = {u E HZ(X;Z) I um+1 = O}. If dim X S; 2m + 1, 
then I/; is suryective, and for a given u E H2(X;Z), l/;-l(U) is in one-to-one 
correspondence with H2m+1(X;Z)/[(m + l)um v Hl(X;Z)]. • 

:; THE SUSPENSION :MAP 

One of the most useful tools for the study of the homotopy groups of spaces 
is the suspension homomorphism from 7Tq(X) to 7Tq+l(SX). Iteration of this 
homomorphism yields a sequence of groups and homomorphisms 

7T q(X) ----7 7T q+l(SX) ----7 7T q+z(S2 X) ----7 ••• 

This sequence has the stability property that from some point on, all the 
homomorphisms are isomorphisms. For a fixed X and q, therefore, there are 
only a finite number of different groups in the above sequence. 

In this section we shall study the suspension map in some detail and 
establish the stability property. This will enable us to compute 7Tn+l(Sn) for 
all n. Knowledge of these groups, combined with obstruction theory, will lead 
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to the Steenrod classification theorem, which closes the section.! 
We consider the category of pointed spaces and maps. There is a 

functorial suspension map S: [X; Y] ~ [SX;SY] such that S[f] = [Sf]. The 
exponential correspondence defines a natural isomorphism 

[SX;SY] ;:::; [XJ~SY] 

and we define S: [X;Y] ~ [X;QSY] to be the functorial map which is the 
composite of S with this isomorphism. The following result shows that S is 
induced by a map Y ~ QSY. 

I LEMMA Let p: Y ~ QSY be the map defined by p(y)(t) = [y,t] for y E Y 
and tEl. Then for any space X 

S = p#: [X; Y] ~ [X;QSY] 

PROOF The exponential correspondence takes the identity map SY C SY to 
the map p: Y ~ QSY. Because of functorial properties of the exponential 
correspondence, it takes the composite 

SX ~ SY C SY 

to the composite 

X -4 Y ~ QSY • 

Thus, to study the suspension map S, we study the map p. To do 
this we use the fibration PSY ~ SY, which has fiber QSY. With this 
in mind, let us investigate homology properties of fibrations over SY. 
We assume that yo E Y is a nondegenerate base point. We define 
C_Y = {[y,t] E SY 10 ::; t::; Ih} and C+Y = {[y,t] E SY IIh ::; t::; I}. Then 
SY = C_ Y U C+ Y, and there is a homeomorphism Y;:::; C_ Y n C+ Y (sending 
y to [y,Ih]) by means of which we identify Y with C_ Y n C+ Y. Let S'Y be 
the unreduced suspension defined to be the quotient space of Y X I in which 
Y X ° is collapsed to one pOint and Y X 1 is collapsed to another point and 
let C~ Y,C+ Y be analogous subspaces of S'Y (so C~ Y n C~ Y = Y). The map 
collapsing S'yo in S'y is a collapsing map k: S'y ~ SY such that k(C~ Y) = C_ Y 
and k(C~Y) = C+Y. 

2 LEMMA If yo is a nondegenerate base point, the collapsing map 
k: S'y ~ SY defines a homotopy equivalence from any pair consisting of the 
spaces S'Y, C~ Y, C~ Y, and Y to the corresponding pair consisting of SY, c_ Y, 
C+Y, andY. 

PROOF Because yo is a non degenerate base point of Y, it follows, as in the 
proof of lemma 7.3.2c, that Y X j U yo X IcY X I is a cofibration. Let 
[y,t], E S'Y denote the point of S'Y determined by (y,t) E Y X I under the 
quotient map k/: Y X I ~ S'Y. Let H': (Y X j U yo X 1) X I ~ S'Y be the 
homotopy defined by H'(y,O,t) = [Yo,t/2]" H'(y,l,t) = [Yo, (2 - t)/2]', and 
H'(Yo,t',t) = [Yo, (1 - t)t' + t/2]'. Then H' can be extended to a homotopy 

1 The first detailed study of the suspension map appears in H. Freudenthal, tiber die Klassen 
der Spharenabbildungen I, Compositio Mathematica, vol. 5, pp. 299-314, 1937. 
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H": Y X I X I ~ S'Y such that H"(y,t,O) = k'(y,t). Since H"(y,O,t) = H"(y',O,t) 
and H"(y,l,t) = H"(y',l,t) for all y, y' E Y, it follows that there is a 
homotopy H: S'Y X I ~ S'Y such that H([y,t)', t') = H"(y,t,t'). Then H is a 
homotopy from the identity map of S'Y to a map which collapses S'yo to a 
single point such that H(S'yo X 1) C S'yo. Since H(B X 1) C B if B = C~Y, 
C~Y, or Y, the result follows from lemma 7.1.5. • 

3 COROLLARY If Y is a path-connected space with nondegenerate base 
point, then SY is simply connected. 

PROOF By lemma 2, S'Y and SY have the same homotopy type, so it suffices 
to prove that S'Y is simply connected. It is clearly path connected, being the 
quotient of the path-connected space Y X 1. 

Let U_ = {[y,t), E S'Y It < I} and U+ = {[y,t)' E S'Y 10 < t}. Then 
U _ and U + are each open and contractible subsets of S' Y. If w is any closed 
path in S'Yat [Yo,Ih)" there is a partition of I, say, ° = to < t1 < ... < tn = 1, 
such that for each 1 ::::; i ::::; neither W([ti_1,ti)) C U_ or W([ti_1,ti)) C U+. 
Furthermore, it can be assumed that w( ti) E U _ n U + for all 0 ::::; i ::::; n (if 
some W(ti) is not in U_ n U+, ti can be omitted from the partition to obtain 
another partition of I satisfying the original hypothesis, and iteration of this 
procedure will lead to a partition having the additional property demanded). 
Since U_ n U+ is homeomorphic to Y X R, it is path connected. For each i 
let Wi be a path in U _ n U + from w( ti-1) to w( ti) and let w' be the closed path at 
[Yo,lh)' defined by w'(t) = Wi((t - ti-1)/(ti - ti-1)) for ti-1::::; t ::::; ti· 
Because U_ and U+ are each simply connected, wi [ti-hti) is homotopic to 
w'l [ti-1,ti) relative to {ti-1,td. Therefore w ::::: w' reI i. Since w' is a closed 
path in U+, it is null homotopic. Therefore w is null homotopic and S'Y is 
simply connected. • 

4 COROLLARY Let Y have a nondegenerate base point and let p: E ~ SY 
be a fibration. Then {p-1( C_ Y ),p-1( C+ Y)} is an excisive couple in E. 

PROOF Let p': E' ~ S'Y be the fibration induced from p by k: S'Y ~ SY and 
let k: E' ~ E be the associated map. It follows from lemma 2 that k induces 
vertical isomorphisms in the commutative diagram 

H*(p'-l(C~Y),p'-l(Y)) ~ H*(E',p'-l(C'-Y)) 

~l l~ 

H*(p-1(C+Y),p-1(Y)) ~ H*(E,p-1(C_Y)) 

Since C~ Y is a strong deformation retract of U+ (with U+ as defined in 
corollary 3) and Y is a strong deformation retract of U+ n c'- Y, it follows that 
p'-l(C~Y) and p'-l(Y) are strong deformation retracts of p'-l(U+) and 
p'-l(U+ n C~Y), respectively. This implies that {p'-l(C~Y),p'-l(C~Y)} is an 
excisive couple. From the commutative diagram above, the result follows. • 

Because C+ Y and C_ Yare contractible relative to Yo, it follows, as in 
Sec. 2.8, that for any fibration p: E ~ SY with fiber F = p-1(yO) there are 
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fiber homotopy equivalences f-: C_ Y X F ~ p-1(C_ Y) and g+: p-1(C+ Y) ~ 
C+ Y X F such that f-I yo X F is homotopic to the map (yo,z) ~ z and 
g+ I F is homotopic to the map z ~ (Yo,z). The corresponding clutching 
function p,: Y X F ~ F is defined by the equation 

g+f-(Y'z) = (y, p,(y,z)) y E Y, z E F 

Then p, I yo X F is homotopic to the map (yo,z) ~ z. 

:; THEOREM Let p: E ~ SY be a fibration with F = p-1(yO), where yo is 
a nondegenerate base point of Y. If p,: Y X F ~ F is a clutching function 
for p, there are exact sequences (any coefficient module) 

... ~ Hq(E) ~ Hq(C_ Y X F, Y X F) ~ Hq-1(F) ~ Hq_1(E) ~ ... 

"* 8 * ... ~ Hq(E) ~ Hq(F) ~ Hq+1(C_ Y X F, Y X F) ~ Hq+1(E) ~ ... 

PROOF Consider the exact homology sequence of (E,F) 

... ~ Hq(F) ~ Hq(E) ~ Hq(E,F) -4 Hq-1(F) ~ ... 

U sing homotopy properties and corollary 4, there are isomorphisms induced 
by inclusion maps 

Hq(E,F)::? Hq(E,p-1(C+Y)) ~ Hq(p-1(C_Y),p-l(Y)) 

There is also a homotopy equivalence 

and a commutative diagram 

Hq(E,F) ? Hq(E,p-1(C+Y)) ~ Hq(p-l(C_Y),p-1(Y)) /~* Hq((C_Y,Y) X F) 

c1 ,,1 a1 01 

There is also a homotopy equivalence g+: p-1(C+Y) ~ c+Y X F and 
isomorphisms 

Hq_1(p-1(C+ Y)) g::.*) Hq_1(C+ Y X F) ::? Hq-1(F) 

where the right-hand homomorphism is induced by projection to the second 
factor. Because g+ I F is homotopic to the map z ~ (Yo,z), the above composite 
equals i. -1. By definition, p, is the composite 

Y X F f_IYXF) p-1(Y) C p-1(C+Y) ~ C+Y X F~ F 

Therefore there is a commutative diagram 

Hq(E,F) ~ Hq((C_Y,Y) X F) 

01 10 
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The desired exact sequence for homology follows on replacingHq(E,F) by 
Hq((C Y, Y) X F) and a by f.L* a in the homology sequence of (E,F). A similar 
argument establishes the exactness of the cohomology sequence. • 

Specializing to the case where Y = Sn-l, by lemma 1.6.6, S(Sn-l) is 
homeomorphic to Sn, and we obtain the following exact Wang sequence of a 
fibration over Sn. 

6 COROLLARY Let p: E --,) Sn be a fibration with fiber F. There are exact 
sequences 

... --,) Hq(F) ~ Hq(E) --,) Hq_n(F) --,) Hq-1(F) --,) .. . 

. . . --,) Hq(E) 4 HG(F) !4 Hq-n+1(F) --,) Hq+1(E) --,) .. . 

If the second sequence has coefficients in a commutative ring with a unit, 
then 

B(u vv) = B(u) vv + (_l)(n-l) degu uv B(v) 

PROOF Letting Y = Sn-l in theorem 5, we have (C_ Y, Y) homeomorphic to 
(En,Sn-l). Therefore 

Hq((C_Y,Y) X F):::::: Hq((En,Sn-l) X F) :::::: Hq-n(F) 

and the exact sequences result from the exact sequences of theorem 5 on 
replacing Hq(CY X F, Y X F) and Hq(C_Y X F, Y X F) by Hq-n(F) and 
Hq-n(F), respectively. The additional fact concerning B results from the obser­
vation that for the map f.L*: Hq(F) --,) Hq(Sn-l X F) the definitions are such that 

f.L* (u) = 1 X u + s* X B(u) 

where s* E Hn-l(Sn-l) is a suitable generator. Then, since s* v s* = 0, 

1 X (u v v) + s* X B(u v v) 
= f.L*(u v v) 
= [1 X u + s* X B(u)] v [1 X v + s* X B(v)] 
= 1 X (u v v) + s* X [B(u) v v + (_l)(n-l) deg Uu V B(v)] 

This implies the multiplicative property of B. • 

We now specialize to the path fibration p: PSY --,) SY with fiber QSY. 
In this case there is the following simple expression for a clutching function. 

7 LEMMA Let L: C_Y --,) p-l(C_Y) and s+: C+Y --,) p-l(C+Y) be sections 
of the fibration p: PSY --,) SY such that s_(yo) and s+(yo) are both null 
homotopic loops. Then the map f.L: Y X QSY --,) QSY defined by 

f.L(y,w) = (w * s_(y)) * S+(y)-l 

is a clutching function for p. 

PROOF Such sections exist because C_ Y and C+ Yare contractible relative 
to yo. We define fiber-preserving maps 
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f+: C+ Y X QSY ----? p-l(C+ Y) g+: p-l(C+ Y) ----? C+ Y X QSY 

by f-(z,w) = w * s_(z) and g_(w) = (p(w), w * (s_p(W))-l) andf+(z,w) = w * s+(z) 
and g+(w) = (p(w), w * (s+p(w))-l), respectively. It is easy to verify that 
g_ 0 f- is fiber homotopic to the identity map of C_ Y X QSY and f- 0 g_ is 
fiber homotopic to the identity map of p-l(C_ Y). Therefore f- is a fiber 
homotopy equivalence. Similarly, g+ is a fiber homotopy equivalence. Further­
more, f-(Yo,w) = w * s_(yo) is homotopic to the map (yo,w) ----? w because 
s_(yo) is null'homotopic. Similarly, for w E QSY, g+(w) = (Yo, w * s+(YO)-l) is 
homotopic to the map w ----? (yo,w). Therefore the composite 

Y X QSY ~ p-l(Y) ~ Y X QSY ----? QSY 

is a clutching function for p. This composite is the map 

(y,w) ----? (w * s_(y)) * S+(y)-l • 

Let s_ and s+ be sections as in lemma 7 and let IL': Y ----? QSY be defined 
by 1L'(y) = s_(y) * S+(y)-l. IL' is called a characteristic map for the fibration 
p: PSY ----? SY. 

8 COROLLARY Let IL': Y ----? QSY be a characteristic map for the fibration 
p: PSY ----? SY. The map Y X QSY ----? QSY sending (y,w) to w * 1L'(y) is homo­
topic to a clutching function for p. 

PROOF This follows from lemma 7, because the map 

(y,w) ----? (w * s_(y)) * S+(y)-l 

is clearly homotopic to the map (y,w) ----? w * (s_(y) * S+(y)-l) = W * 1L'(y). • 

The following theorem is the main part of the proof of the suspension 
theorem. 

9 THEOREM Let Y be n-connected for some n ~ 0 and let yo be a non­
degenerate base point of Y. If IL': Y ----? QSY is a characteristic map for the 
fibration p: PSY ----? SY, then IL' induces an isomorphism 

q ~ 2n + I 
PROOF By corollary 3, SY is simply connected. By corollary 4, {C_ Y,C+ Y} 
is an excisive couple, and from the exactness of the reduced Mayer-Vietoris 
sequence, iiq(SY) :::::: iiq_1(Y). Combining these with the absolute Hurewicz 
isomorphism theorem, SY is (n + I)-connected. Therefore QSY is n-connected. 
Because PSY is contractible, it follows from the version of theorem 5, using 
reduced modules, that there is an isomorphism 

~o: Hq((C_Y,Y) X QSY):::::: iiq_1(QSY) 

If Wo is the constant loop, then because QSY is n-connected and (C_ Y, Y) 
is (n + I)-connected, it follows from the Kiinneth theorem that the inclusion 
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map (C_ Y, Y) X Wo C (C_ Y, Y) X QSY induces an isomorphism 

q ::; 2n + 2 

Let p,: Y X Q5Y ~ QSY be a clutching function which is homotopic to 
the map (y,w) ~ w * p,'(y) (such a p, exists, by corollary 8). Since p,(y,wo) is 
homotopic to the map y ~ p,'(y), there is a commutative diagram 

Hq(CY,Y) -:::7 Hq((CY,Y) X wo) ~ Hq((C_Y,Y) X QSY) 

01 ~ 01 
Hq- 1(y) -.::! Hq_1(Y X wo) - Hq_1(Y X QSY) 

I'~ ~* 
Hq_ 1(QSY) 

The result follows from the commutativity of this diagram. • 

10 COROLLARY Let Y have a nondegenerate base point. If Y is n-connected 
for n ~ 0, the map p: Y ~ QSY induces an isomorphism 

q ::; 2n + I 
PROOF Let s_: C_Y ~ p-l(C_Y) and s+: C+Y ~ p-l(C+Y) be the sections 
defined by L[y,t](t') = [y,tt'] and s+[y,t](t') = [y, I - t' + tt']. The corre­
sponding characteristic map is equal to the map p: Y ~ QSY. The result 
follows from theorem 9. • 

We are now ready for the following suspension theorem. 1 

II THEOREM Let Y be n-connected for n ~ I with a nondegenerate 
base point and let X be a pointed CW complex. Then the suspension map 

S: [X;Y]~ [SX;SY] 

is surjective if dim X ::; 2n + I and biiective if dim X ::; 2n. 

PROOF Because Y and QSY are simply connected, it follows from corollary 10 
and the Whitehead theorem that p is a (2n + I)-equivalence. The result 
follows from corollary 7.6.23 and lemma 1. • 

Let Y be a space with a nondegenerate base point. Then SY also has a 
nondegenerate base point and is path connected, S2Y is simply connected, 
and Smy is (m - I)-connected. If X is a CW complex, so is SmX, and 
dim (Smx) = m + dim X. Hence, if X is finite dimensional and m ~ 2 + dim X, 
it follows from theorem 11 that S: [Smx; Smy] ::::: [Sm+1X; Sm+1Y]. Therefore, 
for any finite-dimensional CW complex X the sequence 

[X;Y] ~ [SX;SYJ ~ ... ~ [SmX;SmY] ~ ... 

1 For a general relative form of this theorem see E. Spanier and J. H. C. Whitehead, The theory 
of carriers and S-theory, in "Algebraic Geometry and Topology" (a symposium in honor of 
S. Lefschetz), Princeton University Press, Princeton, N.J., 1957, pp. 330-360. 
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consists of isomorphisms from some point on. Taking X = Sn+k and Y = Sn 
and recalling that the suspension of a sphere is a sphere, we see that there is 
a sequence 

7Tn+k(Sn) ~ 7Tn+k+l(Sn+1) ~ ... 

consisting of isomorphisms from some point on. The direct limit of this 
sequence is called the k-stem. It follows from theorem 11 that the k-stem is 
isomorphic to 7T2k+2(Sk+2). In particular, the O-stem is infinite cyclic. The fol­
lowing result determines the I-stem. 

12 THEOREM 7T4(S3);:::::; Z2. 

PROOF Let Uo E HO(nS3) be the unit integral class and define generators 
Ui E H2i(nS3), by induction on i from the exactness of the Wang sequence in 
corollary 6 for the fibration PS3 ~ S3, by the equation 

O(Ui+l) = Ui i 2 0 

Because 0 is a derivation, O(UI v Ul) = 2Ul, whence Ul v Ul = 2U2. We 
know 7T2(nS3);:::::; 7T3(S3) is infinite cyclic. It follows that nS3 can be 
imbedded in a space X of type (Z,2) such that the inclusion map nS3 c X 
induces an isomorphism 7T2(nS3) ;:::::; 7T2(X), Since P ",(C) is also a space of type 
(Z,2), it follows that H* (X) ;:::::; H* (P "'(C)) ;:::::; lim_ {H* (Pj(C))} is a polynomial 
algebra with a single generator v E H2(X), and v can be chosen so that 
v I nS3 = Ul· 

An easy computation using the exact cohomology sequence of (X,nS3) 
establishes that Hq(X,nS3) = 0 for q < 5 and H5(X,nS3);:::::; Z2. By the 
universal-coefficient formula, Hq(X,nS3) = 0 for q < 4 and H4(X,nS3) ;:::::; Z2. 
By the relative Hurewicz isomorphism theorem, 7T4(X,nS3);:::::; Z2. Because 

a 7T3(X) = 0 = 7T4(X)' we have 7T4(X,nS3) ;:::::; 7T3(nS3) ;:::::; 7T4(S3). • 

The (n - 2)-fold suspension of a generator of 7T3(S2) is a generator of 
7Tn+l(Sn) (because S: 7T3(S2) ~ 7T4(S3) is an epimorphism, by theorem 11). 
Attaching a cell to Sn by this map must, therefore, kill 7Tn+l(Sn). The resulting 
CW complex has the same homotopy type as the (n - 2)-fold suspension of 
the complex projective plane P2(C). Therefore we have proved the following 
result. 

n> 2 • 

We want to classify maps of an (n + I)-complex into Sn. For n = 2 this 
is given by the case m = 1 of theorem 8.4.11. By using the standard 
Postnikov factorization of Sn, we are reduced to classifying maps of an 
(n + I)-complex into E, where p: E ~ B is a principal fibration of type 
(Z2, n + 2), with base space B a space of type (Z,n). This fibration determines 
a cohomology operation On of type (n, n + 2; Z,Z2). 

14 LEMMA For n > 2 the cohomology operation On is Sq2 0 Il*, where 
Il*: Hn(X;Z) ~ Hn(X;Z2) is induced by the coefficient homomorphism 
Il: Z ~ Z2. 
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PROOF Sn C Sn-2(P2(C)) is not a retract, by theorem 12 and corollary 13. 
Therefore On: Hn(Sn-2(P2(C));Z) ~ Hn+2(Sn-2(P2(C));Z2) is nontrivial (if On 
were trivial, there would be a map f: Sn-2(P2(C)) ~ Sn such that 

f*: Hn(Sn;Z) ;:::; Hn(Sn-2(P2(C));Z) 

is inverse to the restriction map Hn(Sn-2(p2(C));Z);:::; Hn(Sn;Z), and such a 
map f would be homotopic to a weak retraction). Since Sq2 0 fL* is also non­
trivial, it follows that On = Sq2 0 ~ in the space Sn-2(P2(C)). 

The rest of the argument follows by showing that Sn-2(P2(C)) is universal 
for On and Sq2 0 fL*. Let X be any CW complex of dimension ::; n + 2 and let 
u E Hn(X;Z). Because ?Tn+1(Sn-2(P2(C))) = 0, there is a map f: X ~ Sn-2(P2(C)) 
such that f* v = u, where v is a generator of Hn(Sn-2(P2(C))). By the natural­
ity of On and Sq2 0 ~, it follows that 

On(u) = Onf*v = f*Onv = f*Sq2~v = Sq2 fL*(U) 

Since this is true for every CW complex of dimension ::; n + 2 and On and 
Sq2 0 ~ are operations of type (n, n + 2; Z,Z2), it is true for every CW 
complex. • 

Combining lemma 14 with theorem 8.4.lO yields the following Steenrod 
classification theorem. 1 

15 THEOREM Let s* E Hn( Sn; Z) be a generator, where n > 2, and let 'X 
be a CW complex. Then the map 1/;: [X;Sn] ~ Hn(X;Z) has image equal to 
{u E Hn(x;Z) I Sq2 fL* (u) = O} if dim X ::; n + 2, and if dim X ::; n + 1, 
1/;-1(U) is in one-to-one correspondence with Hn+1(X;Z2)/Sq2 fL* Hn-1(X;Z). • 

EXERCISES 

A SPACES OF TYPE (?T,n) n 

I For P an integer let Ln(p) be the generalized lens space Ln(P) = L(p, ~). 
Show that Ln(P) C Ln+l(p) and that Lx(p) = Un Ln(P) topologized with the topology 
coherent with {Ln(P)} is a space of type (Zp,l). 

2 If X is a CW complex of type (?T,n) for n > 1 and Y is a CW complex, prove that 

7Tn(XV Y)::::: 7Tn(Y) ffi EEl 7Th 

where 7Th = 7T for each A E 7Tl(Y). 

3 Given a sequence of groups {7Tq}q~l' with 7Tq abelian for q > 1, and given an action 
of 7Tl as a group of operators on 7T q for q > 1, prove that there is a space Y which realizes 
this sequence (that is, 7Tq(Y) ::::: 7Tq and 7Tl(Y) acting on 7Tq(Y) corresponds to the action 
of 7Tl on 7T q). 

1 See N. E. Steenrod, Products of cocycles and extensions of mappings, Annals of Mathematics, 
vol. 48, pp. 290-320, 1947. 
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B EXACT SEQUENCES CONTAINING ~ 
Let g: (Y,B) -? (Y',B') be a base-point-preserving map and let g' = g I Y: Y -? Y' and 
g" = g I B: B -? B'. 

I Prove that Eg" is a subspace of Eg' and Po" = Pg' lEg", 

2 Define p: (Eo"Eo") -? (Y,B) so that p lEg' = Pg' and i: (QY',QB') -? (Eg"Eg,,) so that 
i(w) = (Yo,w). Prove that there is an exact sequence 

(QY,QB) ~ (QY',QB') -4 (Eg',Eo") ~ (Y,B) ~ (Y',B') 

3 Prove that there is an exact sequence 

... ~ Qn(Eo',Eo") ~ Qn(Y,B) ~ Qn(Y',B') -? ... ~ (Y',B') 

4 Define a map (QY' X Eg', QB' X Eo") -? (Eg',Eg,,) sending w X (yo,w') to (Yo, w. w') 
and use this to define an action a T b of [X,A; QY',QB'] on the left on [X,A; Eg"Eg,,]. 
Prove that p#(b l ) = p#(b2) for bl , b2 E [X,A; EO"Eg,,] if and only if there is 

a E [X,A; QY',QB'] such that bl = a T b2. 

it Prove that i#(al) = i#(a2) for aI, a2 E [X,A; QY',QB'] if and only if there is 

c E [X,A; QY,QB] such that al = a2(Qg)#(c). 

C EXAMPLES 

I Find an example of an n-dimensional polyhedron X, with n > 1, and a map 
I: X -? Sn such that 1*: 8. (X) -? 8. (sn) is trivial but I is not homotopic to a constant 
map. 

2 Let X be an n-dimensional polyhedron. Prove that I, g: X -? Sn are homotopic if and 
only if f. = g.:Hn(X;G) ~ Hn(Sn;G) for G = Zp with p a prime, and for G = R. 

3 Compute the cohomotopy group 7T2m- I(Pm(C)) for m ::::: 2. 

4 Let (Y,B) be a pair which is (n - I)-connected for n ::::: 2, with a simple inclusion 
map BeY, and let t E Hn(Y,B; 7T) be n-characteristic for (Y,B). If (X,A) is a relative CW 
complex and I: (X,A) -? (Y,B), prove that I· (t) E Hn(X,A; 7T) is the first obstruction to 
deforming I relative to A to a map from X to B. 

D SUSPENSION 

I Let X be an (n - I)-connected CW complex of dimension :s; 2n - 1. Prove that 
there is a CW complex Y such that SY has the same homotopy type as X. [Hint: Show 
that X has the same homotopy type as a CW complex X', with (X')n-I a single point. 
Construct Y inductively by desuspending the attaching maps of the cells of X'.] 

2 Let A and B be closed subsets of a space X such that X = A U B. Assume that 
I, g: X -? Yare such that I(A) = yo = g(B) and define h: X -? Y so that h I A = g I A 
and h I B = II B. Prove that, in [SX;SY], 

[Sfl[Sg] = [Sh] 

3 Let X and Y be path-connected pointed CW complexes. Prove that a map f: X -? Y 
has the property that Skf: SkX -? Sky is a homotopy equivalence for some k ::::: 0 if and 
only if Sf: SX -? SY is a homotopy equivalence. [Hint: Show that either condition is 
equivalent to the condition I.: H. (X) :::::: H. (Y).] 

4 Let X and Y be path-connected pointed CW complexes and let PI: X X Y -? X and 
P2: X X Y -? Y be the projections and k: X X Y -? X # Y = X X Y IX v Y the collaps­
ing map. Regard all three as maps into X v Y v (X # Y) and prove that 
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((Spi) * (Sp2)) * (Sk): S(X X Y) -'> S(Xv Yv X # Y) 

is a homotopy equivalence. 

5 Show that there exist CW complexes with different homotopy type whose suspensions 
have the same homotopy type. 

E THE SUSPENSION CATEGORY 

Let {X,A; Y,B} = lim~ [SkX,SkA; SkY,SkB), and for q an integer (positive or negative) let 
{X,A; Y,B}q = lim~ [Sk+qX,Sk+qA; SkY,SkB). If a: Sk+q(X,A) -'> Sk(Y,B), then {a} will 
denote the corresponding element of {X,A; Y,B}q. 

I Prove that there is a pairing 

{Y,B; Z,C}p ® {X,A; Y,B}q -'> {X,A; Z,C}p+q 

sending {a} ® {l3} to {a ° f3}, where 

Sp+q+k(X,A) -4 sP+k(Y,B) -"'--> Sk(Z,C) 

2 If A is closed in X and (X,A) has a nondegenerate base point, prove that 
{(C_X,C~), (C+X,C+A)} is an excisive couple of subsets. Let S: Hq(X,A) :::::: Hq+i(SX,SA) 
and S: Hq(X,A) :::::: Hq+1(SX,SA) be the isomorphisms of the corresponding relative 
Mayer-Vietoris sequences. 

3 Prove that there are pairings 

{X,A; Y,B}p ® Hq(X,A) -'> Hp+q(Y,B) 
{X,A; Y,B}p ® W(Y,B) -'> W-p(X,A) 

sending {a} ® z to S-k(a* (Sk+ PZ )) and {a} ® u to S-k-p(a * (SkU)) for z E Hq(X,A), 
u E W(Y,B), and a: Sk+p(X,A) -'> Sk(Y,B). 

4 If (X,A) is a pointed pair, with A C X a cofibration, and Y is a pointed space, prove 
that there is an exact sequence 

... -'> {X; Y}q -'> {A; Y}q -'> { X/A; Y }q-i -'> {X; Y }q-i -'> ... 

5 Let X be a pointed space and (Y,B) a pointed pair, with BeY a cofibration. 

If f: X -'> Y is such that the composite X .!c, Y ~ Y /B is null homotopic, prove that Sf 

is homotopic to the composite SX -4 SB C SY for some 1'. Deduce the existence of an 
exact sequence 

.. , -'> {X;B}q-'> {X;Y}q-'> {X;Y/B}q-'> {X;B}q_i-'> ... 

F DUALITY IN THE SUSPENSION CATEGORy1 

In this group of exercises all spaces are assumed to be finite CW complexes with base 
pOints. An n-duality is an element u E {X * # X; SO} -n such that the map sending 
{a}E{SO;X*}q::::::{Sq;X*} to uo({a}#{lx})E{Sq#X;SO}_n::::::{X;SO}q_n is an 
isomorphism 

Du: {SO;X*}q:::::: {X;SO}q_n 

and the map sending {f3} E {SO;X}q:::::: {sq;X}touo ({lx*} # {f3}) E {X* # Sq; SO}_n:::::: 
{ X * ; SO} q-n is an isomorphism 

1 See E. Spanier, Function spaces and duality, Annals of Mathematics, vol. 70, pp. 338-378, 
1959, for a different development of this topic. The one given in the text is based on a sugges­
tion of P. Freyd and has also been considered by D. Husemoller. 
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IJu: {SO;X}q:::::: {X* ;SO}q-n 

I Iff: 5P # Sq ~ 5P+q is a homeomorphism, prove that {f} E {Sp # Sq; SO}_p_q is a 
(p + q)-duality. 

2 If u E {X* # X; SO}_n is an n-duality, prove that the element u' E {X # X*; SO}-n 
corresponding to u under the homeomorphism X # X* ~ X* # X is also an n-duality. 

3 If u E {X* # X; SO}-n is an n-duality, prove that for any Y and Z there are 
isomorphisms 

Du: {Y; Z # X*}q:::::: {Y # X; Z}q-n 
IJu: {Y; X # Z}q:::::: {X* # Y; Z}q_n 

such that Du{a} = ({Iz} # u) 0 ({a} # {Ix}) for {a} E {Y; Z # X*}q and DU{,8} = 
(u # {Iz}) 0 ({Ix*} # {,8}) for {,8} E {Y; X # Z}q. (Hint: If Yand Z are spheres, this 
is true by definition 'of n-duality. For arbitrary Yand Z use induction on the number of 
cells and the five lemma.) 

Given n-dualities u E {X* # X; SO}-n and v E {y* # Y; SO)-n, define an isomorphism 

D(u,v): {X;Y}q:::::: {Y*;X*}q 

so that the following diagram is commutative: 

{X;Y}q D(u,v\ {Y*;X*}q 

[»>~ 7D. 
{Y*#X; SO}q_n 

4 Prove that D(v',u') = (D(U,V))-1: {y* ;X*}q :::::: {X; Y }q. 

:; If u E {X* # X; SO}_n, v E {y* # Y; SO}-n, and wE {Z* # Z; SO}_n are 
n-dualities and {a} E {X;Y}p and {,8} E {Y;Z}q, prove that, in {Z*;X*}p+q, 

D(u,w)({,8} 0 {a}) = (D(u,v){a}) 0 (D(v,w){,8}) 

Assume that f: X* # X ~ Sn and g: y* # Y ~ Sn are such that {f} and {g} are 
n-dualities and let a: X ~ Yand ,8: y* ~ X* be maps such that 

f 0 (,8 # Ix) ~ g 0 (I y* # a): y* # X ~ Sn 

[which implies D({f},{g}){a} = {,8}l. Let Ca and Cp be the mapping cones of a and,8, 
respectively, and consider the coexact sequences 

X ~ Y -4 Ca ~ SX ~ SY 

y* .4 X* ~ Cp 14 Sy* .§.4 SX* 

6 Prove that there is a map h: Cp # Ca ~ Sn+1 such that the following squares are 
homotopy commutative: 

X* #Ca ~ X* #SX_S(X* #X) 

t#1 !~ 

Cp # Ca ....!4 Sn+1 

Cp # Y 

k' # I! 
Sy* # Y _ S(y* # Y) ~ Sn+1 

Deduce that {h} E {Cp # Ca ; SO}_n_1 is an (n + I)-duality. 

7 For any X there is an integer n for which there exists a space X * and an n-duality 
u E {X* # X; SOl_no (Hint: Prove this by induction on the number of cells of X, using 
exercises 1 and 6 above.) 
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